Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 48(4): 1103-1115, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32995944

RESUMO

PURPOSE: Pridopidine is an investigational drug for Huntington disease (HD). Pridopidine was originally thought to act as a dopamine stabilizer. However, pridopidine shows highest affinity to the sigma-1 receptor (S1R) and enhances neuroprotection via the S1R in preclinical studies. Using [18F] fluspidine and [18F] fallypride PET, the purpose of this study was to assess in vivo target engagement/receptor occupancy of pridopidine to the S1R and dopamine D2/D3 receptor (D2/D3R) at clinical relevant doses in healthy volunteers (HVs) and as proof-of-concept in a small number of patients with HD. METHODS: Using [18F] fluspidine PET (300 MBq, 0-90 min), 11 male HVs (pridopidine 0.5 to 90 mg; six dose groups) and three male patients with HD (pridopidine 90 mg) were investigated twice, without and 2 h after single dose of pridopidine. Using [18F] fallypride PET (200 MBq, 0-210 min), four male HVs were studied without and 2 h following pridopidine administration (90 mg). Receptor occupancy was analyzed by the Lassen plot. RESULTS: S1R occupancy as function of pridopidine dose (or plasma concentration) in HVs could be described by a three-parameter Hill equation with a Hill coefficient larger than one. A high degree of S1R occupancy (87% to 91%) was found throughout the brain at pridopidine doses ranging from 22.5 to 90 mg. S1R occupancy was 43% at 1 mg pridopidine. In contrast, at 90 mg pridopidine, the D2/D3R occupancy was only minimal (~ 3%). CONCLUSIONS: Our PET findings indicate that at clinically relevant single dose of 90 mg, pridopidine acts as a selective S1R ligand showing near to complete S1R occupancy with negligible occupancy of the D2/D3R. The dose S1R occupancy relationship suggests cooperative binding of pridopidine to the S1R. Our findings provide significant clarification about pridopidine's mechanism of action and support further use of the 45-mg twice-daily dose to achieve full and selective targeting of the S1R in future clinical trials of neurodegenerative disorders. Clinical Trials.gov Identifier: NCT03019289 January 12, 2017; EUDRA-CT-Nr. 2016-001757-41.


Assuntos
Dopamina , Doença de Huntington , Benzamidas , Benzofuranos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Voluntários Saudáveis , Humanos , Doença de Huntington/diagnóstico por imagem , Masculino , Piperidinas , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
2.
Molecules ; 25(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384802

RESUMO

Glioblastoma multiforme (GBM) is the most devastating primary brain tumour characterised by infiltrative growth and resistance to therapies. According to recent research, the sigma-1 receptor (sig1R), an endoplasmic reticulum chaperone protein, is involved in signaling pathways assumed to control the proliferation of cancer cells and thus could serve as candidate for molecular characterisation of GBM. To test this hypothesis, we used the clinically applied sig1R-ligand (S)-(-)-[18F]fluspidine in imaging studies in an orthotopic mouse model of GBM (U87-MG) as well as in human GBM tissue. A tumour-specific overexpression of sig1R in the U87-MG model was revealed in vitro by autoradiography. The binding parameters demonstrated target-selective binding according to identical KD values in the tumour area and the contralateral side, but a higher density of sig1R in the tumour. Different kinetic profiles were observed in both areas, with a slower washout in the tumour tissue compared to the contralateral side. The translational relevance of sig1R imaging in oncology is reflected by the autoradiographic detection of tumour-specific expression of sig1R in samples obtained from patients with glioblastoma. Thus, the herein presented data support further research on sig1R in neuro-oncology.


Assuntos
Benzofuranos/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imagem Molecular/métodos , Piperidinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores sigma/metabolismo , Animais , Autorradiografia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Radioisótopos de Flúor , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Camundongos Nus , Compostos Radiofarmacêuticos , Receptores sigma/genética , Transplante Heterólogo , Receptor Sigma-1
3.
Molecules ; 23(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558382

RESUMO

Sigma-1 receptors (Sig1R) are highly expressed in various human cancer cells and hence imaging of this target with positron emission tomography (PET) can contribute to a better understanding of tumor pathophysiology and support the development of antineoplastic drugs. Two Sig1R-specific radiolabeled enantiomers (S)-(-)- and (R)-(+)-[18F]fluspidine were investigated in several tumor cell lines including melanoma, squamous cell/epidermoid carcinoma, prostate carcinoma, and glioblastoma. Dynamic PET scans were performed in mice to investigate the suitability of both radiotracers for tumor imaging. The Sig1R expression in the respective tumors was confirmed by Western blot. Rather low radiotracer uptake was found in heterotopically (subcutaneously) implanted tumors. Therefore, a brain tumor model (U87-MG) with orthotopic implantation was chosen to investigate the suitability of the two Sig1R radiotracers for brain tumor imaging. High tumor uptake as well as a favorable tumor-to-background ratio was found. These results suggest that Sig1R PET imaging of brain tumors with [18F]fluspidine could be possible. Further studies with this tumor model will be performed to confirm specific binding and the integrity of the blood-brain barrier (BBB).


Assuntos
Benzofuranos/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Piperidinas/farmacologia , Receptores sigma/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Nus , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Receptor Sigma-1
4.
Molecules ; 21(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598110

RESUMO

The enantiomers of [(18)F]fluspidine, recently developed for imaging of σ1 receptors, possess distinct pharmacokinetics facilitating their use in different clinical settings. To support their translational potential, we estimated the human radiation dose of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine from ex vivo biodistribution and PET/MRI data in mice after extrapolation to the human scale. In addition, we validated the preclinical results by performing a first-in-human PET/CT study using (S)-(-)-[(18)F]fluspidine. Based on the respective time-activity curves, we calculated using OLINDA the particular organ doses (ODs) and effective doses (EDs). The ED values of (S)-(-)-[(18)F]fluspidine and (R)-(+)-[(18)F]fluspidine differed significantly with image-derived values obtained in mice with 12.9 µSv/MBq and 14.0 µSv/MBq (p < 0.025), respectively. A comparable ratio was estimated from the biodistribution data. In the human study, the ED of (S)-(-)-[(18)F]fluspidine was calculated as 21.0 µSv/MBq. Altogether, the ED values for both [(18)F]fluspidine enantiomers determined from the preclinical studies are comparable with other (18)F-labeled PET imaging agents. In addition, the first-in-human study confirmed that the radiation risk of (S)-(-)-[(18)F]fluspidine imaging is within acceptable limits. However, as already shown for other PET tracers, the actual ED of (S)-(-)-[(18)F]fluspidine in humans was underestimated by preclinical imaging which needs to be considered in other first-in-human studies.


Assuntos
Benzofuranos , Radioisótopos de Flúor , Piperidinas , Tomografia por Emissão de Pósitrons/métodos , Doses de Radiação , Compostos Radiofarmacêuticos , Animais , Benzofuranos/química , Benzofuranos/farmacocinética , Benzofuranos/farmacologia , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Radioisótopos de Flúor/farmacologia , Humanos , Masculino , Camundongos , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Traçadores Radioativos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia
5.
Appl Radiat Isot ; 84: 1-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24291352

RESUMO

The radiosynthesis of [(18)F]Fluspidine, a potent σ1 receptor imaging probe for pre-clinical/clinical studies, was implemented on a TRACERlab(TM) FX F-N synthesizer. [(18)F]2 was synthesized in 15 min at 85 °C starting from its tosylate precursor. Purification via semi-preparative RP-HPLC was investigated using different columns and eluent compositions and was most successful on a polar RP phase with acetonitrile/water buffered with NH4OAc. After solid phase extraction, [(18)F]Fluspidine was formulated and produced within 59±4 min with an overall radiochemical yield of 37±8%, a radiochemical purity of 99.3±0.5% and high specific activity (176.6±52.0 GBq/µmol).


Assuntos
Benzofuranos/síntese química , Radioisótopos de Flúor , Piperidinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Automação Laboratorial , Cromatografia Líquida de Alta Pressão , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA