Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Autophagy ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177530

RESUMO

Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.

2.
J Cell Sci ; 137(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39145464

RESUMO

Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Humanos , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Animais , Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo
3.
Methods Mol Biol ; 2845: 197-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115668

RESUMO

Selective autophagic degradation of cellular components has been shown to be mediated by the interaction of LIR motif-containing proteins with ATG8-family proteins. Here, we present a detailed methodology for the in silico evaluation of potential binding between LIR motif-containing proteins and ATG8-family proteins. We visualize AlphaFold-predicted protein complexes using PyMOL to assess potential interactions, providing an effective computational tool for this purpose.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Ligação Proteica , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Motivos de Aminoácidos , Simulação por Computador , Biologia Computacional/métodos , Autofagia , Humanos , Software , Domínios e Motivos de Interação entre Proteínas
4.
Autophagy ; : 1-2, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991544

RESUMO

In the budding yeast Saccharomyces cerevisiae, macroautophagy/autophagy can be induced by various types of starvation. It is thought that potential autophagic substrates vary to meet specific nutritional demands under different starvation conditions. In a recent study, Gross et al. found that autophagy induced by phosphate starvation includes many selective aspects. For example, this work identified Pho81 as a regulator of pexophagy under conditions of phosphate starvation. Pho81 senses phosphate metabolites and directly interacts with Atg11 to promote Atg1-mediated Atg11 phosphorylation. This finding provides an example of how modulation of the Atg1/ULK kinase complex can convey specific metabolic information to regulate autophagic substrates.Abbreviation: AKC: Atg1/ULK kinase complex.

5.
Autophagy ; : 1-3, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38963025

RESUMO

Individual Atg8 (autophagy related 8) paralogs, comprising MAP1LC3A/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2/GATE16, play a crucial role in canonical macroautophagy/autophagy. However, their functions remain unclear owing to functional redundancy. In a previous study, we reported that intracellular Streptococcus pneumoniae triggers hierarchical autophagy in response to bacterial infection. This process commences with the induction of conjugation of Atg8 paralogs (Atg8s) to single membranes (CASM), followed by CASM shedding and subsequent induction of xenophagy. In our recent study, we performed functional analysis of Atg8s during pneumococci-induced hierarchical autophagy. Our findings suggest that LC3A and GABARAPL1 are crucial for CASM induction, whereas GABARAPL2 and GABARAP play sequential roles in CASM shedding and subsequent induction of xenophagy, respectively.Abbreviation: Atg8: autophagy related 8; Atg8s: Atg8 paralogs; CASM: conjugation of Atg8s to single membranes; mpi: minutes post-infection; mpi: minutes post-infection; PcAV: pneumococci-containing autophagic vesicles; PcLV: LC3-associated phagosome (LAPosome)-like vacuole; PcV: pneumococci-containing vesicles; Sp: S. pneumoniae.

6.
Autophagy ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958087

RESUMO

Autophagosome biogenesis is a complex process orchestrated by dynamic interactions between Atg (autophagy-related) proteins and characterized by the turnover of specific cargoes, which can differ over time and depending on how autophagy is stimulated. Proteomic analyses are central to uncover protein-protein interaction networks and when combined with proximity-dependent biotinylation or proximity labeling (PL) approaches, they also permit to detect transient and weak interactions. However, current PL procedures for yeast Saccharomyces cerevisiae, one of the leading models for the study of autophagy, do not allow to keep temporal specificity and thus identify interactions and cargoes at a precise time point upon autophagy induction. Here, we present a new ascorbate peroxidase 2 (APEX2)-based PL protocol adapted to yeast that preserves temporal specificity and allows uncovering neighbor proteins by either western blot or proteomics. As a proof of concept, we applied this new method to identify Atg8 and Atg9 interactors and detected known binding partners as well as potential uncharacterized ones in rich and nitrogen starvation conditions. Also, as a proof of concept, we confirmed the spatial proximity interaction between Atg8 and Faa1. We believe that this protocol will be a new important experimental tool for all those researchers studying the mechanism and roles of autophagy in yeast, but also other cellular pathways in this model organism.Abbreviations: APEX2, ascorbate peroxidase 2, Atg, autophagy-related; BP, biotin phenol; Cvt, cytoplasm-to-vacuole targeting; ER, endoplasmic reticulum; LN2, liquid nitrogen; MS, mass spectrometry; PAS, phagophore assembly site; PL, proximity labeling; PE, phosphatidylethanolamine; PPINs, protein-protein interaction networks; PPIs, protein-protein interactions; RT, room temperature; SARs, selective autophagy receptors; WT, wild-type.

7.
Protein J ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980535

RESUMO

In the realm of parasitology, autophagy has emerged as a critical focal point, particularly in combating Leishmaniasis. Central to this endeavour is the recognition of the protein ATG8 as pivotal for the survival and infectivity of the parasitic organism Leishmania major, thereby making it a potential target for therapeutic intervention. Consequently, there is a pressing need to delve into the structural characteristics of ATG8 to facilitate the design of effective drugs. In this study, our efforts centered on the purification of ATG8 from Leishmania major, which enabled novel insights into its structural features through meticulous spectroscopic analysis. We aimed to comprehensively assess the stability and behaviour of ATG8 in the presence of various denaturants, including urea, guanidinium chloride, and SDS-based chemicals. Methodically, our approach included secondary structural analysis utilizing CD spectroscopy, which not only validated but also augmented computationally predicted structures of ATG8 reported in previous investigations. Remarkably, our findings unveiled that the purified ATG8 protein retained its folded conformation, exhibiting the anticipated secondary structure. Moreover, our exploration extended to the influence of lipids on ATG8 stability, yielding intriguing revelations. We uncovered a nuanced perspective suggesting that targeting both the lipid composition of Leishmania major and ATG8 could offer a promising strategy for future therapeutic approaches in combating leishmaniasis. Collectively, our study underscores the importance of understanding the structural intricacies of ATG8 in driving advancements towards the development of targeted therapies against Leishmaniasis, thereby providing a foundation for future investigations in this field.

8.
Methods Mol Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39046619

RESUMO

The identification and characterization of noncanonical functions within the autophagy pathway have unveiled intricate cellular processes, including LC3-associated phagocytosis (LAP) and LC3-associated endocytosis (LANDO). These phenomena play pivotal roles in the conjugation of ATG8 with single-membrane phagosomes and endosomes, shedding light on the dynamic interplay between autophagy and cellular homeostasis. Here, we present detailed protocols for both qualitative and quantitative assessment of LAP, including immunofluorescence, flow cytometry, and Western blotting of isolated LAPosomes. Additionally, the protocol for the evaluation of LANDO through immunofluorescent detection of receptor recycling is outlined. The methodologies presented herein serve as a practical guide for researchers seeking to unravel the intricacies of LAP and LANDO. By providing step-by-step instructions, accompanied by insights into potential challenges and optimization strategies, this chapter aims to empower investigators in the exploration of these noncanonical functions of autophagy proteins.

9.
Cells ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39056807

RESUMO

Recycling of unnecessary or dysfunctional cellular structures through autophagy plays a critical role in cellular homeostasis and environmental resilience. Therefore, the autophagy trait may have been unintentionally selected in wheat breeding programs for higher yields in arid climates. This hypothesis was tested by measuring the response of three common autophagy markers, ATG7, ATG8, and NBR1, to a heat wave under reduced soil moisture content in 16 genetically diverse spring wheat landraces originating from different geographical locations. We observed in the greenhouse trials that ATG8 and NBR1 exhibited genotype-specific responses to a 1 h, 40 °C heat wave, while ATG7 did not show a consistent response. Three genotypes from Uruguay, Mozambique, and Afghanistan showed a pattern consistent with higher autophagic activity: decreased or stable abundance of both ATG8 and NBR1 proteins, coupled with increased transcription of ATG8 and NBR1. In contrast, three genotypes from Pakistan, Ethiopia, and Egypt exhibited elevated ATG8 protein levels alongside reduced or unaltered ATG8 transcript levels, indicating a potential suppression or no change in autophagic activity. Principal component analysis demonstrated a correlation between lower abundance of ATG8 and NBR1 proteins and higher yield in the field trials. We found that (i) the combination of heat and drought activated autophagy only in several genotypes, suggesting that despite being a resilience mechanism, autophagy is a heat-sensitive process; (ii) higher autophagic activity correlates positively with greater yield; (iii) the lack of autophagic activity in some high-yielding genotypes suggests contribution of alternative stress-resilient mechanisms; and (iv) enhanced autophagic activity in response to heat and drought was independently selected by wheat breeding programs in different geographic locations.


Assuntos
Autofagia , Genótipo , Temperatura Alta , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Autofagia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Autophagy ; : 1-3, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909316

RESUMO

Mutations in the DDHD2 (DDHD domain containing 2) gene cause autosomal recessive spastic paraplegia type 54 (SPG54), a rare neurodegenerative disorder characterized by the early childhood onset of progressive spastic paraplegia. DDHD2 is reported as the principal brain triacylglycerol (TAG) lipase whose dysfunction causes massive lipid droplet (LD) accumulation in the brains of SPG54 patients. However, the precise functions of DDHD2 in regulating LD catabolism are not yet fully understood. In a recent study, we demonstrate that DDHD2 interacts with multiple members of the Atg8-family proteins (MAP1LC3/LC3s, GABARAPs), which play crucial roles in lipophagy. DDHD2 possesses two LC3-interacting region (LIR) motifs that contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a compound that tethers LC3 to LDs to enhance their macroautophagic/autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide insights into the dual functions of DDHD2 as a TAG lipase and cargo receptor for lipophagy in neuronal LD catabolism, and also suggest a potential therapeutic approach for treating SPG54 patients.

11.
J Biochem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843068

RESUMO

Most autophagy-related genes, or ATG genes, have been identified in studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy, and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway, and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.

12.
Autophagy ; : 1-12, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920354

RESUMO

The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.

13.
Protoplasma ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769089

RESUMO

Autophagy regulates the formation of primary cilia, which in turn affects autophagy. The relationship between autophagy and cilia is known to be bidirectional although the specific mechanisms involved have yet to be elucidated. In this study, we found for the first time that ATG8 protein localizes in the basal body of the dorsal kineties and the base of the ventral cirri in Euplotes amieti. ATG8 protein maintains the structural integrity of cilia and plays a role in the construction of the cortical ciliature and microtubule cytoskeleton associated with cilia. ATG8 gene interference leads to the degradation of IFT88, the transport protein in cilia, thus inhibiting the generation of cilia, and affecting the swing of cilia. This influences the swimming speed and cilia pattern, leading to death in Euplotes amieti.

14.
Autophagy ; : 1-8, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808635

RESUMO

The noncanonical ubiquitin-like conjugation cascade involving the E1 (Atg7), E2 (Atg3, Atg10), and E3 (Atg12-Atg5-Atg16 complex) enzymes is essential for incorporation of Atg8 into the growing phagophore via covalent linkage to PE. This process is an indispensable step in autophagy. Atg8 and E1-E3 enzymes are the first subset from the core autophagy protein machinery structures that were investigated in earlier studies by crystallographic analyses of globular domains. However, research over the past decade shows that many important functions in the conjugation machinery are mediated by intrinsically disordered protein regions (IDPRs) - parts of the protein that do not adopt a stable secondary or tertiary structure, which are inherently dynamic and well suited for protein-membrane interactions but are invisible in protein crystals. Here, we summarize earlier and recent findings on the autophagy conjugation machinery by focusing on the IDPRs. This summary reveals that IDPRs, originally considered dispensable, are in fact major players and a driving force in the function of the autophagy conjugation system. Abbreviation: AD, activation domain of Atg7; AH, amphipathic helix; AIM, Atg8-family interacting motif; CL, catalytic loop (of Atg7); CTD, C-terminal domain; FR, flexible region (of Atg3 or Atg10); GUV, giant unilammelar vesicles; HR, handle region (of Atg3); IDPR, intrinsically disordered protein region; IDPs: intrinsically disordered proteins; LIR, LC3-interacting region; NHD: N-terminal helical domain; NMR, nuclear magnetic resonance; PE, phosphatidylethanolamine; UBL, ubiquitin like.

15.
Genomics ; 116(3): 110853, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701988

RESUMO

Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Fosforilação , Longevidade , Neurônios/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
16.
J Fungi (Basel) ; 10(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786704

RESUMO

Autophagy, a conserved cellular recycling process, plays a crucial role in maintaining homeostasis under stress conditions. It also regulates the development and virulence of numerous filamentous fungi. In this study, we investigated the specific function of ATG8, a reliable autophagic marker, in the opportunistic pathogen Aspergillus flavus. To investigate the role of atg8 in A. flavus, the deletion and complemented mutants of atg8 were generated according to the homologous recombination principle. Deletion of atg8 showed a significant decrease in conidiation, spore germination, and sclerotia formation compared to the WT and atg8C strains. Additionally, aflatoxin production was found severely impaired in the ∆atg8 mutant. The stress assays demonstrated that ATG8 was important for A. flavus response to oxidative stress. The fluorescence microscopy showed increased levels of reactive oxygen species in the ∆atg8 mutant cells, and the transcriptional result also indicated that genes related to the antioxidant system were significantly reduced in the ∆atg8 mutant. We further found that ATG8 participated in regulating the pathogenicity of A. flavus on crop seeds. These results revealed the biological role of ATG8 in A. flavus, which might provide a potential target for the control of A. flavus and AFB1 biosynthesis.

17.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731842

RESUMO

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Assuntos
Autofagia , Desenho de Fármacos , Peptídeos Cíclicos , Humanos , Autofagia/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Células A549 , Células MCF-7
18.
Autophagy ; : 1-3, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818767

RESUMO

Among the MAP1LC3/LC3 subfamily of Atg8 proteins, LC3B and LC3C constitute the most and least studied members, respectively, LC3B being generally considered as an autophagosomal marker and a canonical representative of the LC3 subfamily. In several recent studies, LC3C has emerged as an important modulator in various processes of cell homeostasis. Our own research data demonstrate that LC3C induces higher levels of tethering and of intervesicular lipid mixing than LC3B. LC3C contains a peculiar N-terminal region, different from the other Atg8-family protein members. Using a series of mutants, we have shown that the N-terminal region of LC3C is responsible for the enhanced vesicle tethering, membrane perturbation and vesicle-vesicle fusion activities of LC3C as compared to LC3B.Abbreviations: ATG: autophagy related; GABARAP: gamma-aminobutyric acid receptor associated protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PC: phosphatidyl choline; PE: phosphatidylethanolamine; PEmal: maleimide-derivatized PE; PtdIns: phosphatidylinositol.

19.
Cell Rep ; 43(5): 114255, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38761376

RESUMO

ER-phagy, a selective autophagy targeting the endoplasmic reticulum (ER) for lysosomal degradation through cargo receptors, plays a critical role in ER quality control and is linked to various diseases. However, its physiological and pathological roles remain largely unclear due to a lack of animal model studies. This study establishes Drosophila as an in vivo ER-phagy model. Starvation triggers ER-phagy across multiple fly tissues. Disturbing ER-phagy by either globally upregulating or downregulating ER-phagy receptors, Atl or Rtnl1, harms the fly. Notably, moderate upregulation of ER-phagy in fly brains by overexpressing Atl or Rtnl1 significantly attenuates age-associated neurodegenerations. Furthermore, in a Drosophila model of Alzheimer's disease expressing human amyloid precursor protein (APP), impaired ER-phagy is observed. Enhancing ER-phagy in the APP-expressing fly brain facilitates APP degradation, significantly alleviating disease symptoms. Therefore, our findings suggest that modulating ER-phagy may offer a therapeutic strategy to treat aging and diseases associated with ER protein aggregation.


Assuntos
Precursor de Proteína beta-Amiloide , Autofagia , Proteínas de Drosophila , Drosophila melanogaster , Retículo Endoplasmático , Neurônios , Regulação para Cima , Animais , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia
20.
EMBO J ; 43(15): 3116-3140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38755257

RESUMO

While the molecular mechanism of autophagy is well studied, the cargoes delivered by autophagy remain incompletely characterized. To examine the selectivity of autophagy cargo, we conducted proteomics on isolated yeast autophagic bodies, which are intermediate structures in the autophagy process. We identify a protein, Hab1, that is highly preferentially delivered to vacuoles. The N-terminal 42 amino acid region of Hab1 contains an amphipathic helix and an Atg8-family interacting motif, both of which are necessary and sufficient for the preferential delivery of Hab1 by autophagy. We find that fusion of this region with a cytosolic protein results in preferential delivery of this protein to the vacuole. Furthermore, attachment of this region to an organelle allows for autophagic delivery in a manner independent of canonical autophagy receptor or scaffold proteins. We propose a novel mode of selective autophagy in which a receptor, in this case Hab1, binds directly to forming isolation membranes during bulk autophagy.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Transporte Proteico , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA