Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Phytochemistry ; 227: 114232, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097216

RESUMO

A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 µg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 µM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.

2.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3144-3151, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041074

RESUMO

Atractylodes lancea is a perennial herb of the Asteraceae family and is one of the well-known traditional Chinese medicine(TCM). Several studies have documented polyene alkyne and sesquiterpenoid compounds as the main bioactive compounds of A. lancea, especially atractylodin, atractylon, ß-eudesmol, and hinesol in its rhizomes, which possess anti-virus, anti-inflammation, hypoglycemic, anti-hypoxia, liver protection, and diuresis activities. In parallel with the recent advancements in biotechnology, important achievements have been made in the study of biological characteristics and propagation technology of A. lancea. This study reviews the research progress on morphological features, cytogenetics, ecological planting, effective ingredients, and tissue culture techniques of A. lancea from the biology perspective, so as to provide a theoretical basis for reasonable development of A. lancea resources.


Assuntos
Atractylodes , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Animais , Humanos
3.
Front Pharmacol ; 15: 1302055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738173

RESUMO

Background: Exosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression. Hypothesis/Purpose: In this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents. Methods: ALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses. Results: Overall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide. Conclusion: Our findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent.

4.
J Fungi (Basel) ; 10(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786706

RESUMO

Atractylodes lancea is a perennial herb whose rhizome (AR) is a valuable traditional Chinese medicine with immense market demand. The cultivation of Atractylodes lancea faces outbreaks of root rot and deterioration in herb quality due to complex causes. Here, we investigated the effects of Trichoderma spp., well-known biocontrol agents and plant-growth-promoters, on ARs. We isolated Trichoderma strains from healthy ARs collected in different habitats and selected three T. harzianum strains (Th2, Th3 and Th4) with the strongest antagonizing effects on root rot pathogens (Fusarium spp.). We inoculated geo-authentic A. lancea plantlets with Th2, Th3 and Th4 and measured the biomass and quality of 70-day-old ARs. Th2 and Th3 promoted root rot resistance of A. lancea. Th2, Th3 and Th4 all boosted AR quality: the concentration of the four major medicinal compounds in ARs (atractylon, atractylodin, hinesol and ß-eudesmol) each increased 1.6- to 18.2-fold. Meanwhile, however, the yield of ARs decreased by 0.58- to 0.27-fold. Overall, Th3 dramatically increased the quality of ARs at a relatively low cost, namely lower yield, showing great potential for practical application. Our results showed selectivity between A. lancea and allochthonous Trichoderma isolates, indicating the importance of selecting specific microbial patches for herb cultivation.

5.
Plant Dis ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598853

RESUMO

The cultivated aromatic medicinal herb Atractylodes lancea (Thunb.) DC. is widely used in the pharmaceuticals, nutraceuticals, and cosmetics industries (Na-Bangchang et al. 2014; Zhan et al. 2023). Huanggang in Hubei Province is a major production area for A. lancea (Huang et al. 2022; Wang et al. 2023). In April 2023, more than two-thirds of the surveyed plant leaves in this region exhibited virus-like symptoms, such as curling and mosaic patterns. To identify the underlying cause, 80 symptomatic plant leaf samples were collected from four fields (20 leaves per field) in this region and pooled for virome analysis. Total RNA, including ribosomal RNA, was extracted from the pooled samples using the Plant RNA Extraction Mini Kit (Onrew Biotech, Guangdong, China), for sequencing library construction. The Illumina NovaSeq 6000 platform was used to sequence the library and generate 150 bp paired-end reads. After processing the raw data with Trimmomatic software, a total of 44,354,650 high-quality clean reads were obtained. The clean reads were aligned against ribosomal RNA using BWA software (v0.7.17) to avoid interference and eliminate corresponding sequences. After removing potential contamination, contig assembly of the clean reads was performed using Megahit software (v1.2.9). The resulting contigs were compared with the virus NT database using the BLASTn program. Sequence pairwise comparison revealed 8 contigs (574 nt to 2243 nt) with identities ranging from 81.88% to 90.77% with Atractylodes mild mottle virus (AMMV, NC_027924.1, Lim et al., 2015). Additionally, contigs mapped to Carlavirus, Pelarspovirus, and other plant viruses in our virome dataset had low coverage and pairwise identity (less than 70%), which need to be further investigated. The presence of AMMV was confirmed by aligning the clean reads to the reference sequence (NC_027924.1) using BWA and SAMtools software, resulting in a consensus sequence (8024 nt) with gaps. DNA extraction from the pooled samples was performed using the Rapid Universal Genomic DNA Extraction Kit (Simgen, Zhejiang, China). Two pairs of specific primers, 3399F (5'-AAAGAAGAACCTCCTGATACGG-3')/5924R (5'-TGAACCTGATTCTCTTGGC-3') and 1830F (5'- CTCAGGAAATCCCAATGC -3')/3640R(5'-TTTCCCAATGTTCTTCGGG-3'), were designed to amplify the complete gene sequences of polymerase and coat protein (CP), based on the consensus sequence. The PCR products with the lengths of 2521 bp and 1814 bp were cloned into the pMD18-T vector (Takara Biotech, Dalian, China) for sequencing. The BLASTn analysis showed that the polymerase and CP gene sequences shared an identity of 94.51% (1929/2041 nt) and 88.41% (1419/1605 nt) with the AMMV isolate (NC_027924.1), respectively. The sequences have been deposited in GenBank under the accession numbers OR544810 and OR544811. We collected leaves from 32 A. lancea plants (16 symptomatic and 16 asymptomatic) in the fields. RT-PCR was conducted using CPF (5'-CTGCGAATATGAAAGTGC-3') and CPR (5'-GGTGAGCTTGTCTGTTAGG-3') primers, which were designed targeting a 527bp fragment of the CP gene (OR544811). Amplicons of the expected size (527bp) were detected in 24 plants (11 symptomatic and 13 asymptomatic), three of which were sequenced by Sanger sequencing, showing a 100% match to OR544811. These findings indicate that AMMV is prevalent in the major production area of A. lancea. Further research is needed to better characterize the potential risks of AMMV to A. lancea cultivation in China as well as other countries.

6.
Heliyon ; 10(5): e25909, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439839

RESUMO

Objective: To investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, ß-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. Methods: The stability of the ATaAL-EO group, the ß-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. Results: In a hot environment of 60 °C, the ß-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and ß-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusion: ß-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.

7.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230827

RESUMO

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Assuntos
Atractylodes , Microbioma Gastrointestinal , Camundongos , Animais , Baço , Atractylodes/química , Rizoma/química , Polissacarídeos , Diarreia/tratamento farmacológico
8.
Open Life Sci ; 18(1): 20220769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027226

RESUMO

This study aimed to explore the important role of the rhizosphere microbiome in the quality of Atractylodes lancea (Thunb.) DC. (A. lancea). The rhizosphere microbial community of A. lancea at two sampling sites was studied using metagenomic technology. The results of α-diversity analysis showed that the rhizosphere microbial richness and diversity were higher in the Maoshan area. The higher abundance of core microorganisms of the rhizosphere, especially Penicillium and Streptomyces, in the Maoshan area compared with those in the Yingshan area might be an important factor affecting the yield of A. lancea. Redundancy analysis illustrated that the available phosphorus had a significant effect on the rhizosphere microbial community structure of A. lancea. We also showed that the plant-microbe and microbe-microbe interactions were closer in the Maoshan area than in the Yingshan area, and Streptomyces were the main contributors to the potential functional difference between the two regions. A. lancea in the Maoshan area had a high content of atractylodin and atractylon, which might be related to the enhanced abundance of Streptomyces, Candidatus-Solibacter, and Frankia. Taken together, this study provided theoretical insights into the interaction between medicinal plants and the rhizosphere microbiome and provides a valuable reference for studying beneficial microbes of A. lancea.

9.
Pharmacol Res Perspect ; 11(6): e01149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902256

RESUMO

ß-eudesmol is a major bioactive component of Atractylodes lancea (AL). AL has been developed as the capsule formulation of standardized AL extract for treating cholangiocarcinoma (CCA). However, the complex constituents of herbal products increase the risk of adverse drug interactions. ß-eudesmol has demonstrated inhibitory effects on rCYP2C19 and rCYP3A4 in the previous research. This study aimed to identify the cytochrome P450 (CYP) isoforms responsible for the metabolism of ß-eudesmol and determine the enzyme kinetic parameters and the metabolic stability of ß-eudesmol metabolism in the microsomal system. Reaction phenotyping using human recombinant CYPs (rCYPs) and selective chemical inhibitors of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was performed, and enzyme kinetics and metabolic stability were investigated using human liver microsome (HLM). The results suggest that CYP2C19 and CYP3A4 play significant roles in ß-eudesmol metabolism. The disappearance half-life (t1/2 ) and intrinsic clearance (CLint ) of ß-eudesmol were 17.09 min and 0.20 mL/min·mg protein, respectively. Enzyme kinetic analysis revealed the Michaelis-Menten constant (Km ) and maximum velocity (Vmax ) of 16.76 µM and 3.35 nmol/min·mg protein, respectively. As a component of AL, ß-eudesmol, as a substrate and inhibitor of CYP2C19 and CYP3A4, has a high potential for drug-drug interactions when AL is co-administered with other herbs or conventional medicines.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Cinética , Citocromo P-450 CYP2C19/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo
10.
Front Plant Sci ; 14: 1237800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841605

RESUMO

Introduction: Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics. Method: This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS. Results: The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of ß-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas. Discussion: This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.

11.
J Agric Food Chem ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861444

RESUMO

Plant-derived polysaccharides, such as Atractylodes lancea rhizome polysaccharide (ALP), are good immune regulators. However, the immune regulatory mechanism of the ALP is unknown. This study aimed to evaluate the effects of ALP on the intestinal mucosal barrier and intestinal mucosal immunity of immunosuppressed mice. We also compared the activity of raw Atractylodes lancea rhizome polysaccharide (SALP) with wheat bran processed bran-fried Atractylodes lancea rhizome polysaccharide (FALP; both at 1.2 g/kg/d for mice). Our results showed that ALP effectively increased the immune organ index and blood cell count, stimulated the secretion of cytokines, and promoted the expression of occludin and zonula occludens-1 (ZO-1). ALP also promoted the expression of T cells and the secretion of sIgA. Furthermore, ALP alleviated the gut microbiota disorder in Cy-treated mice and increased the relative abundances of Lactobacillus and Faecalibaculum. ALP reversed the decrease in the level of SCFAs and promoted the expression of G protein-coupled receptor 43 (GPR43). To our knowledge, this study was the first to explore how the ALP protects the intestinal mucosal barrier and enhances intestinal mucosal immunity by alleviating the gut microbiota imbalance and metabolic disorders of SCFAs. FALP was more therapeutic than SALP, suggesting that FALP could be developed as a promising functional food component.

12.
Appl Microbiol Biotechnol ; 107(21): 6655-6670, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688598

RESUMO

Atractylodes lancea is an important source of traditional Chinese medicines. Sesquiterpenoids are the key active compounds in A. lancea, and their presence determines the quality of the material. Hairy hoot (HR) culture is a potential method to produce medicinally active compounds industrially; however, the induction and metabolic profiling of A. lancea HR have not been reported. We found that optimal induction of A. lancea HR was achieved by Agrobacterium rhizogenes strain C58C1 using the young leaves of tissue culture seedlings in the rooting stage as explants. Ultra-performance liquid chromatography-tandem mass spectrometric analyses of the chemical compositions of HR and normal root (NR) led to the annotation of 1046 metabolites. Over 200 differentially accumulated metabolites were identified, with 41 found to be up-regulated in HR relative to NR and 179 down-regulated in HR. Specifically, atractylodin levels were higher in HR, while the levels of ß-eudesmol and hinesol were higher in NR. Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR. Five A. lancea compounds are potential biomarkers for evaluation of HR and NR quality. This study provides an important reference for the application of HR for the production of medicinally active compounds. KEY POINTS: • We established an efficient protocol for the induction of HR in A. lancea • HR was found to have a significantly higher amount of atractylodin than did NRs • Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR.

13.
BMC Complement Med Ther ; 23(1): 332, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730604

RESUMO

BACKGROUND: Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS: ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS: Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS: This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.


Assuntos
Antimaláricos , Atractylodes , Malária Cerebral , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Artesunato , Malária Cerebral/tratamento farmacológico , Antimaláricos/farmacologia
14.
Int J Biol Macromol ; 253(Pt 4): 127044, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742891

RESUMO

Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and ß-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and ß-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and ß-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.


Assuntos
Atractylodes , Sesquiterpenos , Atractylodes/genética , Atractylodes/metabolismo , Polímero Poliacetilênico/metabolismo , Transcriptoma , Sesquiterpenos/metabolismo , Metaboloma
15.
Plant Physiol Biochem ; 203: 108025, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722282

RESUMO

The wild Atractylodes lancea rhizomes have been traditionally used as herbal medicine. As the increasingly exhaustion of wild A. lancea, the artificial cultivation mainly contributed to the medicinal material production. However, besides the phenotypic variation of rhizome phenotypic trait alteration, the qualities of cultivated A. lancea decrease compared with the wild counterpart. To unveil the physiological and molecular mechanism beneath the phenotypic variation, GC-MS-based volatile organic compounds (VOCs) profiling and RNAseq-based transcriptome analysis were conducted. The volatile metabolomics profiling revealed 65 differentially accumulated metabolites (DAMs) while the transcriptomic profiling identified 12 009 differentially expressed unigenes (DEGs) post-cultivation. The volatile active compounds including atractylone, and eudesmol accumulated more in wild rhizome than in the cultivated counterpart, and several unigenes in terpene synthesis were downregulated under cultivated condition. Compared with the wild A. lancea rhizome, the contents of bioactive Jasmonic Acid (JAs) in cultivated A. lancea rhizome were higher, and evidences that JAs negatively regulate the terpenes biosynthesis in the cultivated A. lancea rhizome were also provided. The combinational omics analysis further indicated the high correlation between the ten cultivation-suppressed VOCs and the cultivation-altered genes for sesquiterpenoids biosynthesis in A. lancea. The network of the cultivation-altered transcription factors (TFs) and the ten VOCs suggested TFs (e.g. Arabidopsis ERF13 homologs and WRKY50) are involved in the regulation of terpenes biosynthesis. These results laid a theoretical basis for developing geo-herbalism medicinal plants with "high quality and optimal shape".

16.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630228

RESUMO

The rhizome of Atractylodes lancea (Thunb.) DC. (AL), called Maocangzhu in Chinese, is a geoherbalism medical herb in Jiangsu Province that is often used in the prescription of traditional Chinese medicine (TCM), such as for the treatment of COVID-19. The landform and climatic environment of each province varies greatly from south to north, which has an important influence on the chemical constituents in AL. However, there is a lack of research on the significance of its geoherbalism, especially in water-soluble parts other than volatile oil. In this study, eight known compounds were isolated and obtained as reference substances from AL. In addition, liquid chromatography coupled with triple-quadrupole time-of-flight tandem mass spectrometry (LC-triple TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and characterize chemical constituents from different habitats. Moreover, orthogonal partial least-squares discriminant analysis (OPLS-DA) was applied to reveal the differential metabolomics in AL from different habitats based on the qualitative information of the chemical constituents. Results showed that a total of 33 constituents from GC-MS and 106 constituents from LC-triple TOF-MS/MS were identified or inferred, including terpenoids, polyacetylenes, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced from the fragmentation behavior of the major constituents. According to the variable importance in projection (VIP) and p-values, only one volatile differential metabolite was identified by GC-MS screening: ß-eudesmol. Overall, five differential metabolites were identified by LC-triple TOF-MS/MS screening: sucrose, 4(15),11-eudesmadiene; atractylenolide I, 3,5,11-tridecatriene-7,9-diyne-1,2-diacetate, and (3Z,5E,11E)-tridecatriene-7,9-diynyl-1-O-(E)-ferulate. This study provides metabolomic information for the establishment of a comprehensive quality evaluation system for AL.


Assuntos
Atractylodes , COVID-19 , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Metabolômica , Cromatografia Líquida
17.
Biochem Biophys Rep ; 35: 101530, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637942

RESUMO

Aberrant melanin overproduction can significantly impact an individual's appearance and cause mental and psychological distress. Current inhibitors of melanin production exert harmful side effects due to inadequate selectivity; thus a need to develop more selective melanin synthesis inhibitors is necessary. Extracellular vesicles are important agents of intercellular signalling in prokaryotes and eukaryotes. Recently, plant-derived nanoparticles, similar to mammalian exosomes, have attracted attention for their use in health research. In this study, to investigate the potential of plant-derived exosome-like nanoparticles (ELNs) as inhibitors of melanin production, we used hot water to extract ELNs from the rhizome of Atractylodes lancea (A-ELNs). The size of A-ENLs ranged from 34 to 401 nm and carried three microRNA: ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p. These A-ENLs were applied to B16-F10 melanoma cells treated with α-melanocyte-stimulating hormone (α-MSH). After A-ELNs were taken up by B16-F10 cells, their melanin levels were significantly reduced. Furthermore, A-ELNs significantly reduced tyrosinase activity in B16-F10 cells and mRNA expression of microphthalmia-associated transcription factor (Mitf), tyrosinase, tyrosinase-related protein 1, and DOPA chrome tautomerase. These results suggest that A-ELN suppresses melanogenic enzymes expression by downregulating Mitf, thereby inhibiting melanin synthesis. Hence, A-ELN can be developed into a novel topical drug after additional studies and optimization.

18.
Foods ; 12(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569173

RESUMO

Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.

19.
BMC Complement Med Ther ; 23(1): 186, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287012

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA), the adenocarcinoma of the biliary duct, is commonly reported in Asia, with the highest incidence in northeastern Thailand. Chemotherapy of CCA has been limited by the lack of effective chemotherapeutic drugs. A series of previous in vitro and in vivo studies support further research and development of Atractylodes lancea (Thunb.) DC. (AL) as a potential candidate for treating CCA as a crude ethanolic extract. In the present study, we evaluated the toxicity and anti-CCA activity of the CMC (Chemistry, Manufacturing, and Control) capsule formulation of the ethanolic rhizome extract of AL (CMC-AL) in animals. METHODS: Major steps included acute, subchronic and chronic toxicity testing in Wistar rats and anti-CCA activity in a CCA-xenografted nude mouse model. The safety of CMC-AL was determined based on the maximum tolerated dose (MTD) and no-observed-adverse-effect level (NOAEL) according to the OECD guideline. The anti-CCA activity of CMC-AL in nude mice was evaluated after transplantation of CL-6 cells to evaluate inhibitory effects on tumor size progression and metastasis and survival time prolongation. Safety assessments included hematology, biochemistry parameters and histopathological examination. Lung metastasis was investigated using VEGF ELISA kit. RESULTS: All evaluations confirmed satisfactory pharmaceutical properties of oral formulation and safety profile of the CMC-AL with no overt toxicity up to the MTD and NOAEL of 5,000 and 3,000 mg/kg body weight, respectively. CMC-AL exhibited potent anti-CCA efficacy with regard to inhibitory activity on tumor progression and lung metastasis. CONCLUSIONS: CMC-AL is safe and should be further investigated in a clinical trial as a potential therapy for CCA patients.


Assuntos
Atractylodes , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ratos , Camundongos , Animais , Atractylodes/química , Camundongos Nus , Ratos Wistar , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/patologia , Extratos Vegetais/uso terapêutico , Pesquisa
20.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2086-2091, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282897

RESUMO

We explored the correlations between the color difference values [ΔL~*(lightness), Δa~*(red-green), Δb~*(yellow-blue)] and the content of four active components(including sesquiterpenoids and polyacetylenes) in the powder of Atractylodes lancea and A. chinensis, aiming to provide reference for the quality evaluation of Atractylodis Rhizoma and establish a qualitative model that can distinguish between A. lancea and A. chinensis based on the chromatic values. The tristimulus values(L~*, a~*, and b~*) of 23 batches of A. lancea and A. chinensis were measured by a color difference meter. The content of atractylenolide Ⅱ, ß-eudesmol, atractylodin, and atractylone in the 23 batches of samples were measured by high performance liquid chromatography(HPLC). Principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were performed to establish the qualitative models for distinguishing between A. lancea and A. chinensis. SPSS was employed to analyze the correlations between the tristimulus values and the content of the four index components. The results showed that the established PCA and PLS-DA models can divide the A. lancea and A. chinensis samples into two regions, and the tristimulus values of A. lancea and A. chinensis were positively correlated with the content of ß-eudesmol and atractylodin. Therefore, the PCA and PLS-DA models can successfully identify A. lancea and A. chinensis, and the appearance color can be used to quickly predict the internal quality of Atractylodis Rhizoma. This study provides a reference for the quality evaluation of Atractylodis Rhizoma and the modern research on the color of Chinese medicinal materials.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Sesquiterpenos de Eudesmano , Rizoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA