Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Technol ; : 1-10, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989673

RESUMO

An electrochemical biofilter (EBF) was developed for enhancing the removal of volatile organic compounds (VOCs) through current. The removal efficiency (RE) of toluene exhibited a notable increase of 15% while the biomass growth rate exhibited a corresponding decline of 46% under an optimal current intensity of 50 mA. Meanwhile, the efficacy of the EBF system was markedly enhanced upon the removal of n-hexane, styrene, dichloromethane, and diisobutylene. The results indicated that there was an 11% to 49% increase in RE and a 0% to 64% reduction in biomass growth rates under the influence of the current. The current stimulation inhibited the accumulation of microorganisms, thereby alleviating biofilm clogging. The relative abundance of gram-positive phyla, including Firmicutes and Actinobacteria, increased by 15% and 23%, respectively, while the traditionally dominant genera within the Proteobacteria phylum, such as Rhodococcus and Dokdonella, exhibited a decline. In addition, the presence of hydrogen peroxide, free chlorine, and superoxides in the leachate indicated that the oxidative reaction increased in EBF system. This study provides an attractive pathway for current stimulation to enhance degradation of VOCs and alleviate biofilm clogging.

2.
Heliyon ; 10(3): e24646, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314264

RESUMO

The demand for protein is increasing with an expanding world population and is influencing the rapid growth of fish and animal agriculture. These sectors are becoming a significant source of water pollution and need to develop environmentally sustainable techniques that are cost-effective, ideally with potential for downstream value-added production. This study investigated the potential of one of the fastest-growing cyanobacterial species, Synechococcus elongatus UTEX 2973, for bioremediation of mixed wastewater (combination of sturgeon and swine wastewater). Three different mixing ratios (25:75, 50:50, and 75:25 sturgeon:swine) were compared to find a suitable combination for the growth of S. elongatus as well as carbohydrate accumulation in biomass. The final biomass production was found to be 0.65 ± 0.03 g Dry cell Weight (DW)/L for 75%-25 %, 0.90 ± 0.004 g DW/L for 50%-50 %, and 0.71 ± 0.04 g DW/L for 25%-75 % sturgeon-swine wastewater combination. Cyanobacteria cultivated in 50%-50 % sturgeon-swine wastewater also accumulated 70 % total carbohydrate of DW, whereas 75%-25 % sturgeon-swine and 25%-75 % sturgeon-swine accumulated 53 % and 45 %, respectively. Subsequently, the S. elongatus cells were grown in a separate batch of 50%-50 % sturgeon-swine wastewater and compared with cells grown in BG11 synthetic growth media. Cultivation in BG11 resulted in higher biomass production but lower carbohydrate accumulation than 50%-50 % mixed wastewater. Final biomass production was 0.85 ± 0.08 g DW/L for BG11 and 0.65 ± 0.04 g DW/L for 50%-50 % sturgeon-swine wastewater. Total carbohydrate accumulated was 75 % and 64 % of DW for 50%-50 % sturgeon-swine mixed wastewater and BG11 growth media, respectively, where glycogen was the main carbohydrate component (90 %). The nutrient removal efficiencies of S. elongatus were 67.15 % for orthophosphate, 93.39 % for nitrate-nitrite, and 97.98 % for ammonia. This study suggested that S. elongatus is a promising candidate for enabling simultaneous bioremediation of mixed wastewater and the production of value-added biochemicals.

3.
Materials (Basel) ; 16(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763591

RESUMO

Promising methods for managing poultry manure (PM) include converting poultry manure through pyrolysis to biochar, which can be used for soil applications. The overall goal of this study was to determine the effects of poultry manure-derived biochar and compost on the soil and growth of cherry tomatoes. The biochar obtained at 475 °C was characterized by a relatively high organic matter content of 39.47% and nitrogen content of 3.73%, while it had the lowest C/N ratio of 8.18. According to the recommendations of the EBC, the biochar obtained at 475 °C demonstrated the most beneficial effects in terms of fertilizing potential. The composting of poultry manure with the straw was successful, and the limit of 60 °C was exceeded, which allowed for the hygienization of the compost. The produced compost and biochar are sanitary safe and do not exceed the limits of heavy metal content. The lowest plant biomass was obtained from growing medium A with 3.6 g wet weight (0.24 g dry weight). The measurements of the height of cherry tomatoes showed that growing media D, E, and F allowed the plants to obtain from 602 to 654 mm in height.

4.
Glob Chang Biol ; 29(19): 5691-5705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37577794

RESUMO

Climate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long-term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short-term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.


Assuntos
Mudança Climática , Solo , Biomassa , Tempo (Meteorologia) , Árvores , Plantas
5.
Chemosphere ; 339: 139699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532206

RESUMO

Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.


Assuntos
Microalgas , Biocombustíveis , Biotecnologia , Bioengenharia , Biomassa
6.
Enzyme Microb Technol ; 169: 110282, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393814

RESUMO

Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.


Assuntos
Lactobacillus , Prostaglandina-Endoperóxido Sintases , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/biossíntese , Fermentação , Glutamato Descarboxilase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Lactobacillus/enzimologia , Lipoxigenases/metabolismo
7.
Sci Total Environ ; 876: 162605, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906031

RESUMO

Intermittent sand filters (ISFs) are widely used in rural areas to treat domestic and dilute agricultural wastewater due to their simplicity, efficacy and relative low cost. However, filter clogging reduces their operational lifetime and sustainability. To reduce the potential of filter clogging, this study examined pre-treatment of dairy wastewater (DWW) by coagulation with ferric chloride (FeCl3) prior to treatment in replicated, pilot-scale ISFs. Over the study duration and at the end of the study, the extent of clogging across hybrid coagulation-ISFs was quantified, and the results were compared to ISFs treating raw DWW without a coagulation pre-treatment, but otherwise operated under the same conditions. During operation, ISFs receiving raw DWW recorded higher volumetric moisture content (θv) than ISFs treating pre-treated DWW, which indicated that biomass growth and clogging rate was higher in ISFs treating raw DWW, which were fully clogged after 280 days of operation. The hybrid coagulation-ISFs remained fully operational until the end of the study. Examination of the field-saturated hydraulic conductivity (Kfs) showed that ISFs treating raw DWW lost approximately 85 % of their infiltration capacity in the uppermost layer due to biomass build-up versus 40 % loss for hybrid coagulation-ISFs. Furthermore, loss on ignition (LOI) results indicated that conventional ISFs developed five times the organic matter (OM) in the uppermost layer compared to ISFs treating pre-treated DWW. Similar trends were observed for phosphorus, nitrogen and sulphur, where proportionally higher values were observed for raw DWW ISFs than pre-treated DWW ISFs, with values decreasing with depth. Scanning electron microscopy (SEM) showed a clogging biofilm layer on the surface of raw DWW ISFs, while pre-treated ISFs maintained distinguishable sand grains on the surface. Overall, hybrid coagulation-ISFs are likely to sustain infiltration capacity for a longer period than filters treating raw wastewater; therefore, requiring smaller surface area for treatment and minimal maintenance.

8.
Biotechnol Bioeng ; 120(2): 426-443, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308743

RESUMO

Microalgae have received increasing attention as a potential feedstock for biofuel or biobased products. Forecasting the microalgae growth is beneficial for managers in planning pond operations and harvesting decisions. This study proposed a biomass forecasting system comprised of the Huesemann Algae Biomass Growth Model (BGM), the Modular Aquatic Simulation System in Two Dimensions (MASS2), ensemble data assimilation (DA), and numerical weather prediction Global Ensemble Forecast System (GEFS) ensemble meteorological forecasts. The novelty of this study is to seek the use of ensemble DA to improve both BGM and MASS2 model initial conditions with the assimilation of biomass and water temperature measurements and consequently improve short-term biomass forecasting skills. This study introduces the theory behind the proposed integrated biomass forecasting system, with an application undertaken in pseudo-real-time in three outdoor ponds cultured with Chlorella sorokiniana in Delhi, California, United States. Results from all three case studies demonstrate that the biomass forecasting system improved the short-term (i.e., 7-day) biomass forecasting skills by about 60% on average, comparing to forecasts without using the ensemble DA method. Given the satisfactory performances achieved in this study, it is probable that the integrated BGM-MASS2-DA forecasting system can be used operationally to inform managers in making pond operation and harvesting planning decisions.


Assuntos
Chlorella , Microalgas , Modelos Biológicos , Simulação por Computador , Biomassa
9.
Front Plant Sci ; 13: 959118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046584

RESUMO

Global climate change will cause longer and warmer autumns, thus negatively affecting the quality of cold acclimation (CA) and reducing the freezing tolerance (FT) of winter wheat. Insufficient FT and fluctuating temperatures during winter can accelerate the deacclimation (DEA) process, whereas reacclimation (REA) is possible only while the vernalization requirement is unfulfilled. Six winter wheat genotypes with different winter hardiness profiles were used to evaluate the impact of constant low-temperature (2°C) and prolonged higher low-temperature (28 days at 10°C followed by 2°C until day 49) on shoot biomass and metabolite accumulation patterns in leaf and crown tissues throughout 49 days of CA, 7 days of DEA, and 14 days of REA. The FT of winter wheat was determined as LT30 values by conducting freezing tests after CA, DEA, and REA. Shoot biomass accumulation, projected as the green leaf area (GLA), was investigated by non-destructive RGB imaging-based phenotyping. Dynamics of carbohydrates, hexose phosphates, organic acids, proteins, and amino acids were assessed in leaf and crown tissues. Results revealed that exposure to higher low-temperature induced higher accumulation of shoot biomass and had a negative impact on FT of winter wheat. Prolonged higher low-temperature negatively affected the accumulation of soluble carbohydrates, protein content and amino acids, and had a positive effect on starch accumulation in leaf and crown tissues after CA, in comparison with the constant low-temperature treatment. DEA resulted in significantly reduced FT. Lower concentrations of glucose-6-phosphate, sucrose and proline, as well as higher concentrations of starch in leaves and crowns were found after DEA. The majority of the genotypes regained FT after REA; higher concentrations of glucose and malate in leaves, and sucrose in crown tissue were observed, whereas starch accumulation was decreased in both tissues. Negative correlations were determined between FT and starch concentration in leaves and crowns, while proline and proteins, accumulated in crowns, showed positive correlations with FT. This study broadens the knowledge regarding the effect of different low-temperature regimes on the dynamics of metabolite accumulation in winter wheat throughout CA, DEA, and REA, and its relationship to biomass accumulation and FT.

10.
Environ Pollut ; 309: 119733, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820570

RESUMO

The present study was aimed at determining the efficacy of rock phosphate (RP) 3% loaded in a green coconut shell, chicken manure, and vegetable waste to make green coconut-modified biochar (GMB), chicken manure modified-biochar (CMB), and vegetable waste-modified biochar (VMB) in the fixation of Cr, Pb, Cu, Zn, Ni, and Cd in Sharafi goth and Malir polluted soils. The impact of RP impregnated with organic waste material to produce modified biochars (MBs) on stabilizing PTEs from polluted soils and reducing their uptake by mustard plant has not yet been thoroughly investigated. All modified BCs in 0.5, 1, and 2% doses were used to stabilize Cr, Pb, Cu, Zn, Ni, and Cd in two polluted soils and to reduce their uptake by the mustard plant. The obtained results revealed that the maximum mustard fresh biomass was 17.8% higher with GMB 1% in Sharafi goth polluted soil and 25% higher with VMB 0.5% in Malir polluted soil than in the control treatment. After applying modified BCs, immobilization of Cr, Pb, Cu, Ni, and Cd was observed in both soils and it reduced the uptake of these elements by mustard plants. On the other hand, although Zn mobilization increased by 0.38% for CMB 0.5% and by 5.9% for VMB 0.5% in Sharafi goth polluted soil, as well as by 3.15% for GMB 1%, 6.34% for GMB 2%, and 4.78% for VMB 0.5% in Malir polluted soil, this was due to changes in soil pH and OM. It was found that GMB 1%, CMB 0.5%, and VMB 0.5% have the potential to increase Zn uptake by mustard, while VMB 2% can reduce the element uptake by the plant. Redundancy analysis showed that soil chemical parameters were negatively correlated with PTEs in both soils and reduced their uptake by mustard. The present study revealed that MBs can stabilize PTEs in industrial and wastewater soils polluted with multiple metals and reduce their uptake by plants.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Chumbo/análise , Esterco , Metais Pesados/análise , Mostardeira , Fosfatos/análise , Solo , Poluentes do Solo/análise
11.
Biology (Basel) ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35453793

RESUMO

S. costatum and C. calcitrans are two cosmopolitan high-value centric diatoms, with a rich nutritional profile. The following work optimised the culture medium of S. costatum and C. calcitrans cultures, respectively, in a stepwise process as follows: 2.4 mM and 1.2 mM of silicate, 4 mM of nitrate, 100 µM of phosphate, 20 and 80 µM iron, and 0.5 mL L-1 of micronutrients. The results that were obtained revealed an increase in biomass productivity with a 1.8- and 3.2-fold increase in biomass that was produced by S. costatum and C. calcitrans, respectively. The biochemical profile showed an increase in high-value PUFAs such as 2.6-fold and 2.3-fold increase in EPA for S. costatum and C. calcitrans, respectively, whilst a 2.6-fold increase in DHA was detected in S. costatum cultures. The present work provides the basic tools for the industrial cultivation of S. costatum and C. calcitrans with enhanced productivity as well as improved biomass quality, two factors which are highly relevant for a more effective application of these diatoms to aquaculture and nutraceutical production.

12.
Chemosphere ; 293: 133527, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34998845

RESUMO

Dark fermentation (DF) of several types of wastes is a promising process to alleviate environmental pollution as it leads to the production of valuable hydrogen (H2) gas and high added value products, such as volatile fatty acids (VFAs). In this study a kinetic model for fermentative H2 production in an Up-flow column reactor (UFCR) is presented. Τhe model structure includes seven biochemical reactions taking place in a two-phase biofilm-liquid system. The observed difference in the overall stoichiometry of the bioconversion process for different hydraulic retention times (HRTs) is predicted by this model as it is attributed to the difference in the extent of individual bioconversion steps, each of which has a constant stoichiometry but a different rate depending on the HRT. The respective kinetic parameters were estimated through model fitting to the experimental results of the UFCR, which operated at different HRTs (12-2 h) and fed with the soluble fraction of a food industry waste (FIW). A good agreement of the experimental and predicted values of soluble metabolic products and H2 production was obtained, rendering this model as a useful tool for further investigation and prediction of the characteristics of the DF process in attached-biomass growth systems.


Assuntos
Reatores Biológicos , Hidrogênio , Anaerobiose , Ácidos Graxos Voláteis , Fermentação , Hidrogênio/metabolismo
13.
Bioresour Technol ; 345: 126479, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864173

RESUMO

In order to optimize light distribution for promoting biomass growth rate of Chlorella pyrenoidosa, concave walls were installed in plate photobioreactors (PBR) to generate rotational flow field of microalgal solution circulated from top inlets to bottom outlets. Flow vortices in four corners of concave-wall PBR resulted in decreased mixing time and increased mass transfer coefficient. The CO2 bio-fixation by C. pyrenoidosa increased by 27% and chlorophyll-a concentration enhanced by 18.5% in concave-wall PBR compared to those in control (flat-wall) PBR. The concave walls diverge light rays to enhance frontal light exposure and supply more light photons into interior regions of PBRs. The promotion in light distribution and vortex flow field with concave walls enhanced light and nutrients utilization by microalgal cells, leading to an increased biomass growth rate by 21%.


Assuntos
Chlorella , Microalgas , Biomassa , Luz , Fotobiorreatores
14.
J Environ Manage ; 301: 113820, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583281

RESUMO

Soil salinization is a widespread problem affecting global food production. Phytoremediation is emerging as a viable and cost-effective technology to reclaim salt-affected soil. However, its efficiency is not clear due to the uncertainty of plant responses in saline soils. The main objective of this paper is to propose a phytoremediation dynamic model (PDM) for salt-affected soil within the process-based biogeochemical denitrification-decomposition (DNDC) model. The PDM represents two salinity processes of phytoremediation: plant salt uptake and salt-affected biomass growth. The salt-soil-plant interaction is simulated as a coupled mass balance equation of water and salt plant uptake. The salt extraction ability by plant is a combination of salt uptake efficiency (F) and transpiration rate. For water filled pore space (WFPS), the statistical measures RMSE, MAE, and R2 during the calibration period are 2.57, 2.14, and 0.49, and they are 2.67, 2.34, and 0.56 during the validation period, respectively. For soil salinity, RMSE, MAE, and R2 during the calibration period are 0.02, 0.02, and 0.92, and 0.06, 0.04, and 0.68 during the validation period, respectively, which are reasonably good for further scenario analysis. Over the four years, cumulative salt uptake varied based on weather conditions. At the optimal salt uptake efficiency (F = 20), cumulative salt uptake from soil was 16-90% for alfalfa, 11-70% for barley, and 10-80% for spring wheat. While at the lowest salt uptake efficiency (F = 40), cumulative salt uptake was nearly zero for all crops. Although barley has the highest peak transpiration flux, alfalfa and spring wheat have greater cumulative salt uptake because their peak transpiration fluxes occurred more frequently than in barley. For salt-tolerant crops biomass growth depends on their threshold soil salinity which determines their ability to take up salt without affecting biomass growth. In order to phytoremediate salt-affected soil, salt-tolerant crops having longer duration of crop physiological stages should be used, but their phytoremediation effectiveness will depend on weather conditions and the soil environment.


Assuntos
Salinidade , Solo , Biodegradação Ambiental , Produtos Agrícolas , Desnitrificação , Água
15.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835566

RESUMO

In this study, magnetic Fe3O4 nanoparticles (NPs) were used as an effective enhancer to increase the biomass and total lipid production of Chlorella sp. UJ-3. It was found that the biomass of algal cells increased significantly when they were exposed to low concentrations of Fe3O4 NPs (20 mg/L), while the best total lipid content of algal cells was achieved when they were exposed to high concentrations of Fe3O4 NPs (100 mg/L). Therefore, we established a strategy to promote the growth and lipid accumulation of microalgae by initially exposing the algal cells to low concentrations of Fe3O4 NPs and then treating them with an increased concentration of Fe3O4 NPs after 12 days of culture. For this strategy, the biomass and total lipid production of algal cells increased by 50% and 108.7%, respectively, compared to the untreated control. The increase in lipid production and change in the fatty acid composition of Chlorella cells were found to help them to cope with the increased number of reactive oxygen species produced due to oxidative stress in alga cells after the addition of Fe3O4 NPs. This study provided a highly efficient way to improve the lipid production of microalgae using nanoparticles.

16.
Bioresour Technol ; 341: 125892, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523555

RESUMO

Continuous automation of conventional industrial operations with smart technology have drawn significant attention. Firstly, the study investigates on optimizing the proportion of industrial biscuit processing waste powder, (B) substituted into BG-11 as a source of cultivation medium for the growth of C. vulgaris. Various percentages of industrial biscuit processing waste powder, (B) were substituted in the inorganic medium to analyse the algal growth and biochemical composition. The use of 40B combination was found to yield highest biomass concentration (4.11 g/L), lipid (260.44 mg/g), protein (263.93 mg/g), and carbohydrate (418.99 mg/g) content compared with all the other culture ratio combination. Secondly, the exploitation of colour acquisition was performed onto C. vulgaris growth phases, and a novel photo-to-biomass concentration estimation was conducted via image processing for three different colour model pixels. Based on linear regression analysis the red, green, blue (RGB) colour model can interpret its colour variance precisely.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Meios de Cultura , Resíduos Industriais , Lipídeos , Águas Residuárias
17.
Biotechnol Lett ; 43(9): 1715-1722, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003399

RESUMO

OBJECTIVE: Marine actinomycetes from the genus Salinispora have an unexploited biotechnological potential. To accurately estimate their application potential however, data on their cultivation, including biomass growth kinetics, are needed but only incomplete information is currently available. RESULTS: This work provides some insight into the effect of temperature, salinity, nitrogen source, glucose concentration and oxygen supply on growth rate, biomass productivity and yield of Salinispora tropica CBN-440T. The experiments were carried out in unbaffled shake flasks and agitated laboratory-scale bioreactors. The results show that the optimum growth temperature lies within the range 28-30 °C, salinity is close to sea water and the initial glucose concentration is around 10 g/L. Among tested nitrogen sources, yeast extract and soy peptone proved to be the most suitable. The change from unbaffled to baffled flasks increased the volumetric oxygen transfer coefficient (kLa) as did the use of agitated bioreactors. The highest specific growth rate (0.0986 h-1) and biomass productivity (1.11 g/L/day) were obtained at kLa = 28.3 h-1. A further increase in kLa was achieved by increasing stirrer speed, but this led to a deterioration in kinetic parameters. CONCLUSIONS: Improvement of S. tropica biomass growth kinetics of was achieved mainly by identifying the most suitable nitrogen sources and optimizing kLa in baffled flasks and agitated bioreactors.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Micromonosporaceae/crescimento & desenvolvimento , Biomassa , Meios de Cultura/química , Glucose/metabolismo , Fenômenos Mecânicos , Nitrogênio/metabolismo , Oxigênio/metabolismo , Salinidade , Temperatura
18.
BMC Res Notes ; 14(1): 153, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883007

RESUMO

OBJECTIVES: Tree legume species play an important role in forest restoration in the tropics. Understanding how different species adjust carbohydrate allocation and growth under distinct nutrient availability will enhance the success of restoring degraded areas. DATA DESCRIPTION: A 2-year tropical forest plantation of the Forest Restoration Program of the Balbina Hydropower Dam was evaluated. Three non-N-fixing (Cenostigma tocantinum, Dipteryx odorata and Senna reticulata) and three N-fixing (Clitoria fairchildiana, Inga edulis and Acacia spp.) tree legume species were either fertilized or not fertilized. Growth rates and biomass allocation were calculated, and carbon (C) fractions and nitrogen (N), phosphorus (P) and nonstructural carbohydrate (NSC) concentrations were determined. Multiple nutrient additions increased the growth rates and aboveground biomass production of fertilized plants. According to the results presented, different species and N- fixers respond differently to fertilization regimes. The authors encourage the use of the presented data in meta-analysis studies that consider the fertilization or nutrient deficiency effects on growth, carbohydrate and nutrient responses. N-fixing species with high biomass growth and foliar N are important for restoring N and C cycles in nutrient-limited soils. Fertilization treatments are fundamental during the early stages of forest plantation development.


Assuntos
Fabaceae , Nitrogênio , Biomassa , Carboidratos , Fertilização , Florestas , Nutrientes , Fósforo , Solo , Clima Tropical
19.
Biotechnol Bioeng ; 118(3): 1419-1424, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400263

RESUMO

Accurate short-range (e.g., 7 days) microalgae growth forecasts will be beneficial for both the production and harvesting of microalgae. This study developed an operational microalgae growth forecasting system comprised of the Huesemann Algae Biomass Growth Model (BGM), the Modular Aquatic Simulation System in Two Dimensions (MASS2) hydrodynamic model, and ensemble data assimilation (DA). The novelty of this study is the use of ensemble DA to sequentially update the BGM model's initial condition (IC) with the assimilation of measured biomass optical density to improve short-range biomass forecasting skills. The forecasting system was run in pseudo-real-time and validated against observed Monoraphidium minutum 26B-AM growth in two outdoor pond cultures located in Mesa, Arizona, United States. We found the DA forecasting system could improve the 7-day microalgae forecasting skill by about 85% on average compared to model forecasts without DA. These results suggest the potential accuracy of biomass growth forecasts may be sufficient to inform real-time operational decisions, such as pond operation and harvest planning, for commercial-scale microalgae production.


Assuntos
Clorofíceas/crescimento & desenvolvimento , Simulação por Computador , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Previsões
20.
Int J Phytoremediation ; 23(5): 454-461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32976718

RESUMO

Palm oil mill effluent (POME) has high chemical oxygen demand (COD), thus requires effective treatments to environmentally benign levels before discharge. In this study, immobilized microalgae cells are used for removing pollutants in treated palm oil mill effluent (TPOME). Different ratios of microalgae beads to TPOME concentration were examined at 1:2.5, 1:5, and 1:10. The biomass concentration and COD removal were measured through a standard method. The color of the cultivated microalgae beads changed from light green to darker green after the POME treatment for 9 days, hence demonstrating that microalgae cells were successfully grown inside the beads with pH up to 9.84. The immobilized cells cultivated in the POME at 1:10 achieved a higher biomass concentration of 1.268 g/L and a COD removal percentage of 72% than other treatment ratios. The increment of the ratio of microalgae cells beads to POME concentration did not cause any improvement in COD removal efficiency. This was due to the inhibitory effect of self-shading resulting in the slow growth rate of microalgae cells which responsible for low COD removal. Therefore, this system could be a viable technology for simultaneous biomass production and POME treatment. This will contribute to research efforts toward the development of new and improved technologies in treating POME.


Assuntos
Poluentes Ambientais , Resíduos Industriais , Alginatos , Biodegradação Ambiental , Células Imobilizadas/química , Resíduos Industriais/análise , Óleo de Palmeira , Óleos de Plantas , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA