Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Physiol Biochem ; 207: 108404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330777

RESUMO

S-nitrosoglutathione reductase (GSNOR). a master regulator of NO homeostasis, is a single-copy gene in most plants. In Lotus japonicus, two GSNOR isoforms were identified exhibiting similar kinetic properties but differential tissue-specific expressions. Previously, a genome-wide identification in Brassica juncea revealed four copies of GSNOR, each encoding proteins that vary in subunit molecular weights and pI. Here, we report multiple forms of GSNOR using 2D immunoblot which showed 4 immunopositive spots of 41.5 kDa (pl 5.79 and 6.78) and 43 kDa (pl 6.16 and 6.23). To confirm, purification of GSNOR using anion-exchange chromatography yielded 2 distinct pools (GSNOR-A & GSNOR-B) with GSNOR activities. Subsequently, affinity-based purification resulted in 1 polypeptide from GSNOR-A and 2 polypeptides from GSNOR-B. Size exclusion-HPLC confirmed 3 GSNORs with molecular weight of 87.48 ± 2.74 KDa (GSNOR-A); 87.36 ± 3.25 and 82.74 ± 2.75 kDa (GSNOR-B). Kinetic analysis showed Km of 118 ± 11 µM and Vmax of 287 ± 22 nkat/mg for GSNOR-A, whereas Km of 96.4 ± 8 µM and Vmax of 349 ± 15 nkat/mg for GSNOR-B. S-nitrosylation and inhibition by NO showed redox regulation of all BjGSNORs. Both purified GSNORs exhibited variable denitrosylation efficiency as depicted by Biotin Switch assay. To the best of our knowledge, this is the first report confirming multiple isoforms of GSNOR in B. juncea.


Assuntos
Mostardeira , Oxirredutases , Oxirredutases/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Cinética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Isoformas de Proteínas/metabolismo , Óxido Nítrico/metabolismo
2.
Bioorg Med Chem Lett ; 30(3): 126898, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874828

RESUMO

Protein disulfide isomerase (PDI), a chaperone protein mostly in endoplasmic reticulum, catalyzes disulfide bond breakage, formation, and rearrangement to promote protein folding. PDI is regarded as a new target for treatment of several disorders. Here, based on the combination principle, we report a new PDI reversible modulator 16F16A-NO by replacing the reactive group in a known PDI inhibitor 16F16 with nitric oxide (NO) donor. Using molecular docking experiment, 16F16A-NO could embed into the active cavity of PDI. From newly developed fluorescent assay, 16F16A-NO showed rapid NO release. Furthermore, it is capable to moderately inhibit activity of PDI and S-nitrosylate the protein, indicating by insulin aggregation assay and biotin-switch technique. Finally, it displayed a dose-dependent antiproliferative activity against SH-SY5Y and HeLa tumor cells. Our designed hybrid compound 16F16A-NO showed a reasonable activity and might offer a promising avenue to develop novel PDI inhibitors for disease treatments.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Doadores de Óxido Nítrico/química , Óxido Nítrico/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo
3.
Methods Mol Biol ; 1747: 281-297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600467

RESUMO

The addition of nitric oxide to cysteine moieties of proteins results in the formation of S-nitrosothiols (SNO) that have emerged as important posttranslational signaling cues in a wide variety of eukaryotic processes. While formation of protein-SNO is largely nonenzymatic, the conserved family of Thioredoxin (TRX) enzymes are capable of selectively reducing protein-SNO. Consequently, TRX enzymes are thought to provide reversibility and specificity to protein-SNO signaling networks. Here, we describe an in vitro methodology based on enzymatic oxidoreductase and biotin-switch techniques, allowing for the detection of protein-SNO targets of TRX enzymes. We show that this methodology identifies both global and specific protein-SNO targets of TRX in plant cell extracts.


Assuntos
Processamento de Proteína Pós-Traducional , S-Nitrosotióis/metabolismo , Tiorredoxinas/metabolismo , Biotina/metabolismo , Biotinilação , Óxido Nítrico/metabolismo , Nitrosação , Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
4.
Plant Sci ; 238: 115-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26259180

RESUMO

Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas Nucleares/metabolismo , Pseudomonas syringae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/química , Células Cultivadas , Cisteína/metabolismo , Immunoblotting , Espectrometria de Massas , Dados de Sequência Molecular , Óxido Nítrico/biossíntese , Nitrosação , Proteínas Nucleares/química , Proteínas Nucleares/isolamento & purificação , Extratos Vegetais/metabolismo , Proteínas Recombinantes/metabolismo , Software
5.
Front Chem ; 2: 114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25750911

RESUMO

The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the biotin switch technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identified. Functional studies focused on specific proteins provided preliminary comprehensive views of how this PTM impacts the structure and function of proteins and, more generally, of how NO might regulate biological plant processes. The aim of this review is to detail the basic principle of protein S-nitrosylation, to provide information on the biochemical and structural features of the S-nitrosylation sites and to describe the proteomic strategies adopted to investigate this PTM in plants. Limits of the current approaches and tomorrow's challenges are also discussed.

6.
J Proteomics ; 92: 160-70, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23796488

RESUMO

Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine.


Assuntos
Cisteína/metabolismo , Compostos Nitrosos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Animais , Cisteína/química , Humanos , Espectrometria de Massas , Compostos Nitrosos/química , Compostos de Sulfidrila
7.
Methods ; 62(2): 151-60, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23428400

RESUMO

Protein S-nitrosylation is a dynamic post-translational modification (PTM) of specific cysteines within a target protein. Both proteins and small molecules are known to regulate the attachment and removal of this PTM, and proteins exhibiting such a function are transnitrosylase or denitrosylase candidates. With the advent of the biotin switch technique coupled to high-throughput proteomics workflows, the identification and quantification of large numbers of S-nitrosylated proteins and peptides is now possible. Proper analysis and interpretation of high throughout and quantitative proteomics data will help identify specific transnitrosylase and denitrosylase target peptide sequences and contribute to an understanding of the function and regulation of specific S-nitrosylation events. Here we describe the application of a quantitative proteomics approach using isotope-coded affinity tags (ICAT) in the biotin switch approach for the identification of transnitrosylation and denitrosylation targets of thioredoxin 1, an enigmatic protein with both reported transnitrosylase and denitrosylase activities.


Assuntos
S-Nitrosotióis/química , Tiorredoxinas/química , Sequência de Aminoácidos , Biotinilação , Linhagem Celular Tumoral , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Humanos , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica , S-Nitrosotióis/metabolismo , Coloração e Rotulagem , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA