Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 457: 140150, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905837

RESUMO

The taste of blue honeysuckle (Lonicera caerulea L.) berries is wrapped in bitterness, and awareness about the essence of bitterness is lacking. In the current study, 7-ketologanin, sweroside and loganin were isolated and identified as key bitter compounds using sensory-guided analysis. The bitterness thresholds of these compounds were determined to be 11.9 µg/mL, 33.5 µg/mL and 60.2 µg/mL. Subsequently, the differences in bitterness among 16 blue honeysuckle varieties were evaluated. The wild varieties A1 and A2 exhibited the highest bitter intensity. 7-Ketologanin, with the highest concentration of 34.70-37.11 mg/100 g and taste activity values of 29.16-31.18 in A1 and A2, was first identified as a bitter contributor in blue honeysuckle. There was no significant difference in bitter intensity between the reconstitution model and the original sample, confirming the contribution of the three bitter compounds. This study lays the foundation for the bitter improvement and variety selection of blue honeysuckle resources.


Assuntos
Frutas , Lonicera , Paladar , Lonicera/química , Frutas/química , Humanos , Extratos Vegetais/química , Masculino , Adulto , Feminino
2.
Fitoterapia ; 175: 105932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565380

RESUMO

Roots of Gentiana purpurea are known to have an intense bitter taste due to its high content of secoiridoids. In folk medicine roots have commonly been prepared as water decoctions, soaked in ethanol, or boiled with milk, wine, or beer. The aim of this study was to explore how various historical preparation methods influence yields of major bitter compounds in G. purpurea. HPLC-DAD analysis revealed that maceration with 40% and 70% ethanol, boiling with acetic acid (3% and 6%), vinegar and raw milk gave the highest extraction yields of gentiopicrin. Erythrocentaurin was detected when the roots were added to cold water before boiling, possibly because of enzymatic degradation. In contrast, erythrocentaurin was not detected in preparations where roots were added to boiling water, or when they were extracted with acetic acid or alcohol. The results stress the significance of traditional preparation methods to optimize yield of bioactive compounds.


Assuntos
Gentiana , Raízes de Plantas , Gentiana/química , Raízes de Plantas/química , Paladar , Glucosídeos Iridoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos/isolamento & purificação , Ácido Acético , Medicina Tradicional
3.
Stem Cells ; 42(1): 42-54, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37798139

RESUMO

Bone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation. In the present study, we demonstrated that umbilical cord blood (UCB)-derived CD34+ cells express fully functional TAS2Rs along with the signal transduction cascade components and their activation by the prototypical agonist, denatonium benzoate, significantly modulated genes involved in stemness maintenance and regulation of cell trafficking. The activation of these specific pathways was confirmed in functional in vitro experiments. Denatonium exposure exerted an antiproliferative effect on UCB-derived CD34+ cells, mainly affecting the most undifferentiated progenitor frequency. It also reduced their clonogenicity and repopulating potential in vitro. In addition, the TAS2R signaling activation impaired the UCB-derived CD34+ cell trafficking, mainly reducing the migration toward the chemoattractant agent CXCL12 and modulating the expression of the adhesion molecules CD62L, CD49d, and CD29. In conclusion, our results in UCB-derived CD34+ cells expand the observation of TAS2R expression in the setting of BM-resident cells and shed light on the role of TAS2Rs in the extrinsic regulation of hematopoietic stem cell functions.


Assuntos
Células-Tronco Hematopoéticas , Paladar , Células-Tronco Hematopoéticas/metabolismo , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD34/metabolismo
4.
Chempluschem ; 88(11): e202300465, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752086

RESUMO

New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.

5.
Food Res Int ; 167: 112643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087235

RESUMO

Tea infected with bird's eye spot disease generally imparts a long-lasting bitter taste, which is unacceptable to most consumers. This study has comprehensively evaluated the taste profiles of infected and healthy teas and investigated their known bitter compounds previously reported in tea. Quantification analyses and calculation of dose-over-threshold (DoT) factors revealed that no obvious difference was visualized in catechins, caffeine, bitter amino acids, and flavonols and their glycosides between infected and healthy tea samples, which was also verified by principal component analysis (PCA) and hierarchical cluster analysis (HCA). Therefore, these known bitter compounds have been ruled out as critical contributors to the long-lasting bitterness of infected teas. Furthermore, Gel permeation chromatography, sensory analysis, and UPLC-Q-TOF-MS were employed and identified 13 substances from the target bitter fractions, including caffeine, ten triterpenoids, and two oxylipins. The higher triterpenoid levels were supposed to be the reason causing the long-lasting bitterness. This study has provided a research direction for the molecular basis of the long-lasting bitterness of infected tea leaves with bird's eye spot disease.


Assuntos
Cafeína , Triterpenos , Cafeína/análise , Paladar , Triterpenos/análise , Glicosídeos/análise , Chá/química
6.
Curr Biol ; 33(5): 940-956.e10, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36791723

RESUMO

The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacterial infection, as recently reported for the peripheral nervous system, is not known. We find that CSF infection by S. pneumoniae in larval zebrafish leads to changes in posture and behavior that are reminiscent of pneumococcal meningitis, including dorsal arching and epileptic-like seizures. We show that during infection, invasion of the CSF by S. pneumoniae massively activates in vivo sensory neurons contacting the CSF, referred to as "CSF-cNs" and previously shown to detect spinal curvature and to control posture, locomotion, and spine morphogenesis. We find that CSF-cNs express orphan bitter taste receptors and respond in vitro to bacterial supernatant and metabolites via massive calcium transients, similar to the ones observed in vivo during infection. Upon infection, CSF-cNs also upregulate the expression of numerous cytokines and complement components involved in innate immunity. Accordingly, we demonstrate, using cell-specific ablation and blockade of neurotransmission, that CSF-cN neurosecretion enhances survival of the host during S. pneumoniae infection. Finally, we show that CSF-cNs respond to various pathogenic bacteria causing meningitis in humans, as well as to the supernatant of cells infected by a neurotropic virus. Altogether, our work uncovers that central sensory neurons in the spinal cord, previously involved in postural control and morphogenesis, contribute as well to host survival by responding to the invasion of the CSF by pathogenic bacteria during meningitis.


Assuntos
Infecções do Sistema Nervoso Central , Streptococcus pneumoniae , Animais , Humanos , Streptococcus pneumoniae/fisiologia , Peixe-Zebra/fisiologia , Sistema Nervoso Central , Células Receptoras Sensoriais/fisiologia
7.
Compr Rev Food Sci Food Saf ; 22(1): 187-232, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382875

RESUMO

The bitter taste is generally considered an undesirable sensory attribute. However, bitter-tasting compounds can significantly affect the overall flavor of many foods and beverages and endow them with various beneficial effects on human health. To better understand the relationship between chemical structure and bitterness, this paper has summarized the bitter compounds in foodstuffs and classified them based on the basic skeletons. Only those bitter compounds that are confirmed by human sensory evaluation have been included in this paper. To develop food products that satisfy consumer preferences, correctly ranking the key bitter compounds in foodstuffs according to their contributions to the overall bitterness intensity is the precondition. Generally, three methods were applied to screen out the key bitter compounds in foods and beverages and evaluate their sensory contributions, including dose-over-threshold factors, taste dilution analysis, and spectrum descriptive analysis method. This paper has discussed in detail the mechanisms and applications of these three methods. Typical procedures for separating and identifying the main bitter compounds in foodstuffs have also been summarized. Additionally, the activation of human bitter taste receptors (TAS2Rs) and the mechanisms of bitter taste transduction are outlined. Ultimately, a conclusion has been drawn to highlight the current problems and propose potential directions for further research.


Assuntos
Percepção Gustatória , Paladar , Humanos , Preferências Alimentares , Alimentos
8.
Appetite ; 180: 106336, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216215

RESUMO

Taste receptors are located on the epithelial surface throughout the alimentary canal to identify nutrients and potential toxins. In the oral cavity, the role of taste is to encourage or discourage ingestion, while in the gastrointestinal (GI) tract, the taste receptors help the body prepare for an appropriate response to the ingested foods. The GI sensing of bitter compounds may alter the secretion of appetite-related hormones thereby reducing food intake, which may have potential use for managing health outcomes. This systematic literature review investigated the acute effects of administering different bitter tasting compounds on circulating levels of selected GI hormones, subjective appetite, and energy intake in humans. A literature search was conducted using Medline, CINAHL and Web of Science databases. Of 290 articles identified, 16 met the inclusion criteria. Twelve studies assessed food intake; four of these found bitter administration decreased food intake and eight did not. Fourteen studies assessed subjective appetite; seven found bitter administration affected at least one measure of appetite and seven detected no significant changes. Nine studies included measures of GI hormones; no significant effects were found for changes in GLP-1, CCK or PYY. Four studies measured motilin and ghrelin and found mostly consistent changes in either food intake or subjective appetite. Overall, the data on food intake and subjective appetite were inconsistent, with only motilin and ghrelin responsive to post-oral bitter administration. There is limited consistent conclusive evidence that bitter compounds influence food intake, appetite or hormones with the reasons for this discussed within. SYSTEMATIC REVIEW REGISTRATION: CRD42021226102.


Assuntos
Regulação do Apetite , Ingestão de Energia , Humanos , Hormônios
9.
Phytochemistry ; 206: 113518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423749

RESUMO

Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.


Assuntos
Gentiana , Animais , Humanos , Gentiana/química , Gentiana/metabolismo , Extratos Vegetais/farmacologia
10.
J Agric Food Chem ; 70(40): 12907-12915, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183262

RESUMO

Excessive and uncoordinated bitterness of Shaoxing Huangjiu, a traditional Chinese rice wine, reduces its acceptance by consumers. To determine the compounds responsible for this bitterness, gas chromatography-mass spectrometry and high-performance liquid chromatography were performed on four types of Shaoxing Huangjiu (Yuanhong, Huadiao, Shanniang, and Xiangxue wine) for targeted quantitation of candidate compounds known to contribute to bitterness. Calculations of dose-over-threshold factors revealed that isoamyl alcohol, 1-hexanol, phenylethanol, ethyl butyrate, ethyl lactate, furfural, histidine, and arginine were important bitter compounds. Taste recombination experiments demonstrated that a recombination model constructed using the screened known bitter compounds showed good similarity with the original sample in bitter taste. Furthermore, omission experiments revealed that isobutanol, isoamyl alcohol, 1-hexanol, phenylethanol, ethyl acetate, ethyl butyrate, ethyl lactate, furfural, arginine, and valine were the compounds affecting the bitter taste perception. This study provides a certain guiding effect on the bitterness control and taste improvement of Shaoxing Huangjiu.


Assuntos
Álcool Feniletílico , Paladar , Arginina , Butiratos , Furaldeído , Hexanóis , Histidina , Lactatos , Pentanóis , Recombinação Genética , Valina
11.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36099178

RESUMO

Compounds that confer a bitter taste on fruits and vegetables (FAVs) play crucial roles in both plant defense and health promotion. This review details the current knowledge of the distribution, properties (toxicity, pharmacological effects and receptors) and environmental plant responses relating to the biosynthesis, catabolism and transcriptional regulation of 53 bitter plant metabolites in diverse species of FAVs. Some bitter compounds, such as flavonoids, are common in all plant species and make a minor contribution to bitter flavor, but many are synthesized only in specific taxa. They make major contributions to the bitter taste of the corresponding species and some also have significant pharmacological effects. Levels of bitter metabolites are genetically determined, but various environmental cues can affect their final concentration during preharvest development and postharvest storage processes. Molecular approaches are helping to unravel the mechanisms of biosynthesis and regulation of bitter compounds in diverse crop species. This review not only discusses the theoretical basis for utilizing breeding programs and other agricultural technologies to produce FAVs with improved safety, favorable taste and healthier profiles, but also suggests new directions for the utilization of bitter compounds in FAVs for the development of natural pesticides and health-promoting medicines.

12.
Int J Food Sci Nutr ; 73(7): 915-926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35775312

RESUMO

Trub, a brewing by-product, can be used as alternative ingredient for foods nutritional enrichment after its bitter compounds extraction. Study presents the optimisation of bitter compounds extraction from trub by Box-Behnken design, and use of debittered trub (DT) as new ingredient to enrich pasta. Bitterness extraction process was evaluated at different pH levels, time and extraction steps, and physical-chemical properties of DT (obtained under optimal conditions) were evaluated. Pasta was enriched with DT (5%, 10% and 15%) and its physical-chemical and quality properties were evaluated. Protein structure and chemical composition of trub were altered after process, also modifying its technological properties. Pasta with 10% DT increased in 33.51% protein content. Interaction of DT and wheat proteins resulted in a more compact structure, and DT water absorption capacity provided pasta texture changes. DT use improved pasta nutritional and quality properties, enabling trub valorisation and its use as vegetable proteins alternative source.


Assuntos
Farinha , Triticum , Triticum/química , Farinha/análise , Culinária , Melhoria de Qualidade , Proteínas de Vegetais Comestíveis , Água
13.
J Sci Food Agric ; 102(11): 4843-4853, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35233761

RESUMO

BACKGROUND: Bitter flavors and antioxidant activities are critical characteristics and indicators, respectively, of beer quality. To gain a better understanding of dry-hopped beer's bitterness, this work comprehensively evaluated the perceived bitterness intensity and bitterness attributes from aspects of beer aroma and non-volatile bitter compounds using sensory analysis under two conditions: (i) with and (ii) without nose clips. To quantify bitter and volatile compounds, the work conducted chromatographic analyses: high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). Simultaneously, this work assessed the antioxidant activity of commercially dry-hopped beers. RESULTS: First, dry-hopped beer in this study contained abundant non-volatile bitter compounds (hop bitter acids, polyphenols and flavonoids), and aroma was validated using HPLC, UPLC-MS and GC-MS methods. Moreover, the bitter-tasting perception test findings demonstrated that many dry-hopped beers had a higher bitterness intensity when evaluated without a nose clip, whereas this phenomenon was adverse in several ale beers. Additionally, the 'lingering' and 'harsh' characteristics were diminished when beer aroma was blocked out (with nose clip) for dry-hopped beer. Meanwhile, most dry-hopped beers had greater antioxidant activity than ale beers (P < 0.05). CONCLUSION: This work revealed the bitterness complexity of dry-hopped beer; besides non-volatile bitter compounds, beer aroma had an impact on the perceived bitterness intensity and attributes, and dry-hopped beer had a relatively intense antioxidant capacity. This study facilitated the development of a detailed knowledge about the assessment of bitter-tasting perceptions in dry-hopped beers and provided a basis for the development of functional beer benefiting human health. © 2022 Society of Chemical Industry.


Assuntos
Cerveja , Humulus , Antioxidantes/análise , Cerveja/análise , Cromatografia Líquida , Humanos , Humulus/química , Espectrometria de Massas em Tandem
14.
J Agric Food Chem ; 70(7): 2354-2365, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133826

RESUMO

Flavonoid glycosides are typical bitter and astringent tasting compounds that contribute to the taste of tea beverages. However, the genes that contribute to the biosynthesis of bitter compounds (e.g., flavanone 7-O-neohesperidoside) in tea plants have yet to be identified. In this study, we identified 194 UDP-glycosyltransferases (UGTs) from the tea transcriptome database. Among them, two genes, CsUGT75L12 and CsUGT79B28, encoding flavonoid 7-O-glycosyltransferase and 7-O-glucoside(1→2)rhamnosyltransferase, respectively, were identified from Camellia sinensis. In vitro, the purified recombinant enzyme rCsUGT75L12 specifically transports the glucose unit from UDP-glucose to the 7-OH position of the flavonoid to produce the respective 7-O-glucoside. rCsUGT79B28 regiospecifically transfers a rhamnose unit from UDP-rhamnose to the 2″-OH position of flavonoid 7-O-glucosides to produce flavonoid 7-O-di-glycosides. Additionally, the expression profiles of the two CsUGTs were correlated with the accumulation patterns of 7-O-glucoside and 7-O-neohesperidoside, respectively, in tea plants. These results indicated that the two CsUGTs are involved in the biosynthesis of bitter flavonoid 7-O-neohesperidoside through the sequential glucosylation and rhamnosylation of flavonoids in C. sinensis. Taken together, our findings provided not only molecular insights into flavonoid di-glycoside metabolism in tea plants but also crucial molecular markers for controlling the bitterness and astringent taste of tea.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Paladar , Chá/metabolismo , Difosfato de Uridina/metabolismo
15.
Chemistry ; 28(2): e202103339, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755407

RESUMO

Trans-iso-α-acid is one of the main contributors to the bitter taste of fresh beer and is known to transform into various derivatives during beer aging. However, structural characterization of the derivatives has been a challenging task because of the formation of too many components. Herein, we report that most of the transformation products of trans-iso-α-acid, isolated in this study in only small quantities by HPLC, can be structurally analyzed with the crystalline sponge method. Thirteen compounds, including eight that were previously unreported, have been successfully isolated and analyzed with complete assignment of their absolute configuration. This provides an improved understanding of the chemical transformations that occur during beer aging.


Assuntos
Cerveja , Paladar , Ácidos , Cromatografia Líquida de Alta Pressão
16.
J Transl Med ; 19(1): 440, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674725

RESUMO

Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.


Assuntos
Papilas Gustativas , Paladar , Ligantes , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
18.
Elife ; 102021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33616529

RESUMO

Although most Drosophila species lay eggs in overripe fruit, the agricultural pest Drosophila suzukii lays eggs in ripe fruit. We found that changes in bitter taste perception have accompanied this adaptation. We show that bitter-sensing mutants of Drosophila melanogaster undergo a shift in egg laying preference toward ripe fruit. D. suzukii has lost 20% of the bitter-sensing sensilla from the labellum, the major taste organ of the head. Physiological responses to various bitter compounds are lost. Responses to strawberry purées are lost from two classes of taste sensilla. Egg laying is not deterred by bitter compounds that deter other species. Profiling of labellar transcriptomes reveals reduced expression of several bitter Gr genes (gustatory receptors). These findings support a model in which bitter compounds in early ripening stages deter egg laying in most Drosophila species, but a loss of bitter response contributes to the adaptation of D. suzukii to ripe fruit.


A new agricultural pest has recently emerged in the United States and Northern Europe. The invasive species is a type of fruit fly that normally lives in Southeast Asia called Drosophila suzukii (also known as the spotted wing Drosophila). This fly poses a threat to fruit crops ­ including strawberries, blueberries, cherries, peaches and grapes ­ because, while other fruit flies lay eggs in overripe fruit, D. suzukii lays eggs in ripe fruit, leading to agricultural losses. This shift in where fruit flies prefer to lay their eggs is related to changes in the senses of smell and touch, and taste could also play a role. Insects have evolved mechanisms that dissuade them from eating or laying eggs in plants with high levels of toxins, which taste bitter. If D. suzukii is less sensitive to bitter tastes than other flies, this could help explain why it lays eggs in just-ripe fruit, since the levels of certain bitter compounds are higher in the early stages of ripening than later on. To figure out if this is the case, Dweck et al. studied different species of fruit fly. Compared to Drosophila melanogaster (a fruit fly common in America and Europe that is regularly used in scientific studies), D. suzukii had fewer bitter taste receptor neurons on the major taste organ of the fly head. These receptor neurons were also less responsive to a variety of bitter compounds. Next, Dweck et al. tested whether D. melanogaster and D. suzukii showed different preferences for where to lay their eggs by offering them strawberry purées made from fruit at different ripening stages. In this experiment, D. suzukii preferred to lay its eggs on purées made from unripe or just-ripe strawberries, while D. melanogaster showed a preference for fermented (overripe) purée. Furthermore, when D. melanogaster flies were genetically modified so that they became less sensitive to bitter taste, they preferred to lay their eggs in ripe (rather than overripe) fruit, similar to D. suzukii. These results suggest that taste has a major role in the egg laying preferences of D. suzukii. Further research is needed to determine which bitter compounds influence egg-laying decisions in each species of fruit fly, and what receptors respond to these compounds. However, Dweck et al.'s results lay the groundwork for new approaches to reducing D. suzukii's impact on agriculture.


Assuntos
Drosophila/fisiologia , Oviposição/fisiologia , Paladar/genética , Animais , Evolução Biológica , Drosophila/genética , Fragaria , Frutas/química , Sensilas/fisiologia , Especificidade da Espécie
19.
Front Oncol ; 10: 1225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793492

RESUMO

The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.

20.
Food Res Int ; 129: 108880, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036877

RESUMO

As a traditional Chinese medicine, Angelica dahurica (Fisch. ex Hoffm.) Benth. et Hook. f. ex Franch. et Sav. cv. Hangbaizhi (Hangbaizhi) is not only used for the curative treatment of diseases such as the common cold and toothache, but also is an important spice that is used to increase the aroma and remove the unpleasant odor in many foods. Hangbaizhi has however, been reported to cause a bitter taste. In this study, the bitter compounds in Hangbaizhi after three common processes (boiling, frying and boiling after frying) were studied. Six bitter compounds (oxypeucedanin hydrate, bergapten, xanthotoxol, imperatorin, isoimpinellin and oxypeucedanin) were identified by high performance liquid chromatography (HPLC)-diode array detection (DAD)-electrospray ionization (ESI)-tandem mass spectrometry (MS) and sensory evaluation. The contribution of these bitter compounds was ranked by taste dilution analysis (TDA). Upon the assessment of methods to reduce the bitter flavor, it was found that baijiu (Chinese liquor) pretreatment was more effective than water-pretreatment.


Assuntos
Angelica/química , Raízes de Plantas/química , Paladar , Culinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA