Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.529
Filtrar
1.
Int J Biol Macromol ; : 135247, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222787

RESUMO

Arabinoxylan (AX) from cereals and millets have garnered attention due to the myriad of their bioactivities. Pearl millet (Pennisetum glaucum) bran, an underexplored milling by-product was used to extract AX (PMAX) by optimized alkali-assisted extraction using Response Surface Methodology and Central Composite Design, achieving a yield of 15.96 ±â€¯0.39 % (w/w) under optimal conditions (0.57 M NaOH, 1:17 g/mL solid-to-liquid ratio, 60 °C, 4 h). Structural analysis revealed that PMAX was primarily composed of arabinose, xylose, glucose, galactose, and mannose (molar ratio 45.1:36.1:10.4:7.1:1.8), with a highly substituted (1 → 4)-linked ß-D-xylopyranose backbone and a molecular weight of 794.88 kDa. PMAX displayed a significant reducing power of 0.617, metal chelating activity of 51.72 %, and DPPH, and ABTS radical scavenging activities (64.43 and 75.4 %, respectively at 5 mg/mL). It also demonstrated anti-glycation effects by inhibiting fructosamine (52.5 %), protein carbonyl (53.6 %), and total advanced glycation end products (77.0 %) formation, and reduced protein oxidation products such as dityrosine (84.7 %), kynurenine (80.2 %), and N'-formyl-kynurenine (50.0 %) at 5 mg/mL. PMAX induced the growth of Lactobacillus spp. in vitro and modulate gut microbiota in male Wistar rats by increasing Bacteroidetes and decreasing Firmicutes. These results provide a basis for further research on pearl millet arabinoxylan and its possible nutraceutical application.

2.
Food Res Int ; 194: 114878, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232516

RESUMO

There has been a growing interest in incorporating sprouted wheat wholemeal (SWW) into whole grain baking, driven by its heightened nutritional content and improved nutrient bioavailability. This study aimed to assess how substituting soft wheat flour (SWF) with various levels of wheat wholemeal (unsprouted and sprouted) impacts the quality and sensory characteristics of hard pretzel sticks, which are globally enjoyed as popular snacks. The dough samples containing wholemeal did not demonstrate the same extensibility as the SWF dough sample. Additionally, substituting SWF with wholemeal increased the resistance to extension. Analysis of the Raman spectra of SWF and two other selected dough samples containing 75 % unsprouted wheat wholemeal (UWW) or SWW indicated α-helix as the dominant protein secondary structure. As the ratio of wholemeal to SWF increased in both unsprouted and sprouted wheat pretzel samples, protein and fiber content increased and starch content decreased, resulting in a decreased peak viscosity in an RVA (Rapid Visco Analyzer) test. The findings also showed no significant difference in hardness between the SWF pretzel sample and all other samples (p > 0.05), except when SWF was replaced with the highest level (75 %) of SWW, resulting in a significantly softer texture. Color analysis revealed that the introduction of wholemeal led to a decrease in the L* value, indicating a darker surface appearance in the samples, likely due to the presence of bran. Finally, sensory evaluation determined that replacing SWF with 25 % SWW resulted in the creation of a sample most similar to SWF in terms of sensory attributes. This research paves the way for future studies and advancements in the formulation and analysis of pretzel dough, creating opportunities to improve both the quality of the product and consumer satisfaction.


Assuntos
Farinha , Triticum , Triticum/química , Farinha/análise , Humanos , Valor Nutritivo , Paladar , Fibras na Dieta/análise , Viscosidade , Dureza , Pão/análise , Grãos Integrais/química , Manipulação de Alimentos/métodos , Lanches , Feminino , Masculino , Adulto , Amido/química , Culinária/métodos
3.
Food Chem ; 462: 140989, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39226641

RESUMO

This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.

4.
EFSA J ; 22(8): e8960, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104808

RESUMO

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the substances 'wax, rice bran, oxidised' and 'wax, rice bran, oxidised, calcium salt', used as additives up to 0.3% in polyethylene terephthalate (PET), polyamide (PA), thermoplastic polyurethane (TPU), polylactic acid (PLA) and poly(vinyl chloride) (PVC) in contact with all food types for long-term storage at room temperature and below, after hot-fill and/or heating. The substances consist of the chemical classes wax esters, carboxylic acids, alcohols and calcium salts of acids, along with an unidentified organic fraction up to ■■■■■ w/w. Migration into 10% ethanol and 4% acetic acid was below 0.012 mg/kg for each chemical class, and about 0.001 mg/kg for the unidentified fraction. In isooctane, migration was up to 0.297 mg/kg food for wax esters, below 0.01 mg/kg food for the other chemical classes and about 0.02 mg/kg food for the unidentified fraction. The contact with dry food and food simulated by 20% ethanol were considered covered by the migration tests with aqueous simulants. Based on genotoxicity assays and compositional analyses, the constituents of the chemical classes did not raise a concern for genotoxicity. The potential migration of individual constituents or groups of chemically-related compounds of the unidentified fraction would result in exposures below (for aqueous food) and above (for fatty food) the threshold of toxicological concern for genotoxic carcinogens. Therefore, the FCM Panel concluded that the substances are not of safety concern for the consumer, if used as additives up to 0.3% w/w in PET, PLA and rigid PVC materials and articles intended for contact with all food types except for fatty foods, for long-term storage at room temperature and below, including hot-fill and/or heating up to 100°C for up to 2 h.

5.
Arch Anim Nutr ; : 1-18, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109963

RESUMO

Two experiments were conducted to determine net energy (NE) values of wheat bran ingredients and develop a prediction equation for NE of wheat bran. In each experiment, 12 multiparous pregnant sows were allocated to two 3 × 6 Youden squares with three consecutive periods and six diets in each square. The study consisted of six diets, including a corn-soybean meal basal diet and five diets formulated with 29.2% wheat bran. Each period lasted for 10 d, with 5 d allocated for adaptation and followed by 5 d for heat production measurement. Sows were provided feed at 604 kJ/kg BW0.75·d-1. On day 10, sows underwent fasting to measure fasting heat production. Results indicated that the inclusion of wheat bran in the diets significantly reduced digestibility of energy and nutrients in (p < 0.05). The average net energy (NE) content of wheat bran was determined to be 8.8 MJ/kg DM. A regress equation NE = 7.968 + 0.28 × CP + 0.607 × EE - 0.782 × ash - 0.05 × hemicellulose (R2 = 0.98, p < 0.01) was found to accurately predit the NE value when feeding pregnant sows with wheat bran-based diets. In conclusion, the net energy content of wheat bran fed to pregnant sows ranged from 7.24 to 10.67 MJ/kg DM and can be effectively estimated using proximate analysis methods.

6.
Foods ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123519

RESUMO

Rice bran, a byproduct of rice milling, comprises 12-14% protein. The foaming properties and associated mechanisms of the composite rice bran protein system were not well studied. In this study, a composite protein system composed of rice bran protein (RBP)-sodium caseinate (NaCas) and rice bran protein nanoparticles (RBPNs)-sodium caseinate (NaCas) was investigated. The results showed that the synergistic effect of RBP and NaCas increased the foaming stability of the composite solution up to 83.77 ± 2.75%. Moreover, the foaming capacity and foaming stability of the RBPNs-NaCas composite solution were up to 177.50 ± 3.53% and 80.28 ± 0.39%, respectively. The physicochemical properties results revealed that the particle size volume peaks of RBP-NaCas and RBPNs-NaCas were mainly concentrated at 55.7 nm and 197.1 nm, and RBPNs-NaCas showed a wider single peak particle size distribution. The ζ-potential values of RBP-NaCas and RBPNs-NaCas were changed to -35.5 ± 0.07 mV and -27.2 ± 0.28 mV after complexation. The apparent viscosity and consistency factor of RBP-NaCas decreased by 31.1% compared to RBP, while RBPNs-NaCas displayed similar parameters to the single proteins. The interfacial rheological test showed that RBP and RBPNs can significantly improve the interfacial properties of NaCas by enhancing the interfacial interaction and the interfacial viscoelastic modulus of composite proteins, which is conducive to the stability of the foam system. The outcome of the study provided a theoretical basis for RBP and RBPNs to partially replace NaCas in the processing of foamed food.

7.
J Med Food ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116888

RESUMO

Menopausal depression, often associated with hormonal fluctuations such as decreased estrogen levels, imposes significant mental health burdens. Despite the antidepressant biological properties of standardized rice bran supplement (RBS), its impact on menopausal depression and underlying mechanisms remains largely unexplored. In this study, we investigated the antidepressant effects of RBS in a mouse model of estrogen deficiency-induced depression. Ovariectomized (OVX) mice received oral doses of RBS (250 and 1000 mg/kg) and 17ß estradiol over a 20-week period. RBS administration resulted in decreased immobility time in the tail suspension and forced swim tests, along with increased locomotor activity in the open field test. Furthermore, RBS enhanced nitric oxide production and neuronal nitric oxide synthase (nNOS) expression in the hippocampi of OVX mice. Additionally, RBS administration phosphorylated extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), and tropomyosin receptor kinase B and increased the protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. These findings suggest that RBS alleviated depressive behaviors in OVX mice by augmenting hippocampal nNOS expression and activating the ERK-CREB-BDNF signaling pathway. Therefore, based on these results, we propose that RBS is a promising agent to treat menopausal depression, a challenging condition.

8.
J Sci Food Agric ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092915

RESUMO

BACKGROUND: Chinese steamed bread (CSB) is one of the most important staple foods in China and is also popular in South-East Asia. Developing functional CSB could improve people's resistance to inflammatory and non inflammatory diseases. This work investigated the effect of sorghum bran addition on antioxidant activities, sensory properties, and in vitro starch digestibility of Chinese southern-style steamed bread (CSSB). RESULTS: In this study, the enhanced CSSB with 0-200 g kg-1 of fine black and tannin (sumac) sorghum bran addition was developed. A small change in phenol content and antioxidant activity was observed at various stages in the processing procedure before steaming. Moreover, a high retention of antioxidant phenolics CSSB with sorghum bran addition was observed. Sorghum bran addition significantly increased the total phenol content and antioxidant activity of CSSB by 4.5-10 times, on average, relative to control. Sorghum bran addition significantly also increased the content of resistant starch, and significantly decreased in vitro starch digestibility in CSSB; these effects were likely due to the joint inhibitory effect of tannins and ferulic acid on starch digestibility. Interestingly, the sorghum bran breads scored higher or similar to control in sensory color preference and overall appearance, but lower on most textural and mouthfeel attributes. CONCLUSION: Sorghum bran addition significantly increased the antioxidant activity of CSSB and significantly decreased starch digestibility. Moreover, the color and appearance properties were maintained or improved. However, the sensorial textural attributes were negatively impacted by the sorghum bran substitutions. Strategies to improve the texture of bran-fortified breads would likely enhance their consumer acceptability. © 2024 Society of Chemical Industry.

9.
Int J Biol Macromol ; 277(Pt 2): 134314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094879

RESUMO

To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 µm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.


Assuntos
Emulsões , Oryza , Tamanho da Partícula , Polissacarídeos , Oryza/química , Emulsões/química , Polissacarídeos/química , Fenóis/química , Proteínas de Plantas/química , Fenol/química
10.
Food Chem X ; 23: 101667, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39139493

RESUMO

By examining and analyzing bran-free fermented Baijiu (BFB) with varying storage periods (0-20 years), it was observed that the overall concentration of volatile compounds initially increases and subsequently decreases over time. Furthermore, BFB exhibited more kinds of long chain esters, higher concentration of acetals, and reduced furfural content. The process of cellaring can enhance the aged, sweet, and fruity aroma of BFB. 16 flavor compounds, including 1,1-diethoxyethane, ethyl dodecanoate, and ethyl hexadecanoate, can be used as markers for vintage BFB, and electronic sensory technology was capable of discerning BFB in different years. The results of redundancy analysis (RDA) showed a positive correlation between metals and aldehydes, esters, and ketones, while indicating a negative correlation with acids and alcohols. Al, Fe, and Ca underwent the most significant changes during storage period, and they were positively correlated with differential substances, such as benzaldehyde, vanillin, ethyl isovalerate, and ethyl palmitate (P < 0.01).

11.
Int J Biol Macromol ; 278(Pt 3): 134860, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39163956

RESUMO

Exploring nutritional therapies that manipulate tryptophan metabolism to activate AhR signaling represents a promising approach for mitigating chronic colitis. Arabinoxylan is a bioactive constituent abundant in wheat bran. Here, we comprehensively investigated anti-colitis potentials of wheat bran arabinoxylan (WBAX), its synbiotic and postbiotic derived from WBAX and Limosilactobacillus reuteri WX-94 (i.e., a probiotic strain exhibiting tryptophan metabolic activity). WBAX fueled L. reuteri and promoted microbial conversion of tryptophan to AhR ligands during in vitro fermentation in the culture medium and in the fecal microbiota from type 2 diabetes. The WBAX postbiotic outperformed WBAX and its synbiotic in augmenting efficacy of tryptophan in restoring DSS-disturbed serum immune markers, colonic tight junction proteins and gene profiles involved in amino acid metabolism and FoxO signaling. The WBAX postbiotic remodeled gut microbiota and superiorly enhanced AhR ligands (i.e., indole metabolites and bile acids), alongside with elevation in colonic AhR and IL-22. Associations between genera and metabolites modified by the postbiotic and colitis in human were verified and strong binding capacities between metabolites and colitis-related targets were demonstrated by molecular docking. Our study advances the novel perspective of WBAX in manipulating tryptophan metabolism and anti-colitis potentials of WBAX postbiotic via promoting gut microbiota-dependent AhR signaling.

12.
Ultrason Sonochem ; 110: 107044, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39186917

RESUMO

Protein hydrolysates have attracted much attention for their high biological activity and are a crucial product form for the utilization of foxtail millet bran by-products. In this study, changes in the structure, functionality, activity and peptide profile of foxtail millet bran protein hydrolysates (FMBPHs) at different ultrasound powers (0 - 600 W) were investigated. The results showed that ultrasound promoted the transformation of α-helix and ß-sheet to random coils and ß-turn, and the exposure of hydrophobic groups and sulfhydryl groups in FMBPHs. The average particle size of the samples decreased, and the absolute value of the ζ-potential increased significantly. Simultaneously, smaller porous particles and loose fragments appeared on the surface of FMBPHs when the ultrasonic power was increased to 450 W. Additionally, 450 W ultrasound treatment improved solubility, foaming properties, emulsifying properties, thermal stability of FMBPHs. The DPPH, ABTS and hydroxyl radical scavenging ability (IC50, 2.65, 1.06 and 3.02 mg/mL), Fe2+ chelating activity (IC50, 2.62 mg/mL), and reducing power of the samples were also enhanced. The peptidomics results demonstrated that ultrasonication increased the number of active peptides in the hydrolysate, and the relative abundance of 17 active peptides was obviously elevated at 450 W. Peptide map analysis showed that ultrasound-induced structural modifications affected the peptide profiles of Ubiquitin-like domain-containing protein, Cupin type-1 domain-containing protein, 40S ribosomal protein S19, and Oleosin 1, showing changes in the abundance of certain peptides, which may be related to changes in the characterization of FMBPHs.

13.
Food Sci Technol Int ; : 10820132241272768, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129370

RESUMO

An increasing number of consumers demand healthier, more convenient, and sustainable food products, including rice, a staple worldwide. Food manufacturers have responded to this trend by considering food's intrinsic and extrinsic aspects. This study evaluated the importance of variety, processing, and claims on willingness to try ready-to-eat rice (RTE-rice). It also analyses the influence of consumer attitudes on the importance of attributes and willingness to try. The results showed that processing significantly influenced willingness to try RTE-rice, revealing consumers' greater preference for whole grain than milled rice with added bran. Claims had the least relevant importance. However, low glycaemic index had a positive impact, indicating its potential to influence consumer purchasing attitudes and promote healthier rice consumption. Additionally, three groups were created based on attitudinal factors. Naturalness-oriented and convenience-oriented groups were more likely to try RTE-rice. However, the reasons that motivate them may be different; this latter could be the ease of the service offered, while for the group focused on naturalness, they may have perceived through the ingredients and claimed that the product, despite being convenient, can bring benefits, thus perceiving them as natural.

14.
J Sci Food Agric ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105634

RESUMO

BACKGROUND: Rice bran oil body is rich in nutritional value, which is a byproduct of rice processing. The aim of this study is to develop a novel emulsion-filled gel with lutein-loaded rice bran oil body and investigate its functionality as a fat replacer in cookies. The effects of incorporating structured oil body in the form of emulsion-filled gel instead of butter in cookies with a ratio of 0, 10, 20 and 50 wt% formulation were determined by measuring appearance, texture, thermodynamic properties, moisture distribution and microstructure. RESULTS: The results demonstrated the relationship between geometry, moisture and structure. The 20 wt% emulsion-filled gel substitution ratio yielded mobility and distribution abilities of melted fat and sugar in the cookies that were closest to those of butter. The addition of emulsion-filled gel increased the L* value and decreased the a* value, while the b* value of the cookie increased due to the advanced delivery of lutein by oil body. By controlling the addition ratio, the texture of the cookies can be adjusted. Starch granules were separated due to colloidal particles, reducing saturated fat content and decreasing cookie gelatinization enthalpy. The fat coating on starch particles enhanced the binding capacity of free water, improving air entrapment and forming a constrained gluten network structure. CONCLUSION: These findings provide a theoretical basis for rice bran oil body as a novel substitute for butter in the development of healthy, high-quality cookies. © 2024 Society of Chemical Industry.

15.
Environ Res ; 261: 119760, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39121700

RESUMO

Aquaculture farming generates a significant amount of wastewater, which has prompted the development of creative bioprocesses to improve wastewater treatment and bioresource recovery. One promising method of achieving these aims is to directly recycle pollutants into microbe-rice bran complexes, which is an economical and efficient technique for wastewater treatment that uses synergetic interactions between algae and bacteria. This study explores novel bioaugmentation as a promising strategy for efficiently forming microbial-rice bran complexes in unsterilized aquaculture wastewater enriched with agricultural residues (molasses and rice bran). Results found that rice bran serves a dual role, acting as both an alternative nutrient source and a biomass support for microalgae and bacteria. Co-bioaugmentation, involving the addition of probiotic bacteria (Bacillus syntrophic consortia) and microalgae consortiums (Tetradesmus dimorphus and Chlorella sp.) to an existing microbial community, led to a remarkable 5-fold increase in microbial-rice bran complex yields compared to the non-bioaugmentation approach. This method provided the most compact biofloc structure (0.50 g/L) and a large particle diameter (404 µm). Co-bioaugmentation significantly boosts the synthesis of extracellular polymeric substances, comprising proteins at 6.5 g/L and polysaccharides at 0.28 g/L. Chlorophyta, comprising 80% of the total algal phylum, and Proteobacteria, comprising 51% of the total bacterial phylum, are emerging as dominant species. These microorganisms play a crucial role in waste and wastewater treatment, as well as in the formation of microbial-rice bran complexes that could serve as an alternative aquaculture feed. This approach prompted changes in both microbial community structure and nutrient cycling processes, as well as water quality. These findings provide valuable insights into the transformative effects of bioaugmentation on the development of microbial-rice bran complexes, offering potential applications in bioprocesses for waste and wastewater management.

16.
Food Res Int ; 192: 114779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147467

RESUMO

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Assuntos
Emulsões , Oryza , Oxirredução , Tamanho da Partícula , beta Caroteno , beta Caroteno/química , Oryza/química , Disponibilidade Biológica , Proteínas de Plantas/química , Viscosidade , Malondialdeído
17.
Food Res Int ; 192: 114747, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147484

RESUMO

Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.


Assuntos
Antioxidantes , Coix , Fibras na Dieta , Digestão , Ácidos Graxos Voláteis , Fermentação , Microbioma Gastrointestinal , Vapor , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Antioxidantes/metabolismo , Antioxidantes/análise , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Coix/química , Humanos , Propionatos/metabolismo , Manipulação de Alimentos/métodos
18.
J Sci Food Agric ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150228

RESUMO

BACKGROUND: Rice bran, a by-product of rice processing, has not been fully utilized except for the small amount used for raising animals. The raw material source requirements of microcrystalline cellulose are becoming increasingly extensive. However, the characteristics of preparing microcrystalline cellulose from rice bran have not been reported, which limits the application of rice bran. RESULTS: Microcrystalline cellulose was obtained from rice bran by alkali treatment, delignification, bleaching and acid hydrolysis. The morphology, particle size distribution, degree of polymerization, crystallinity, and thermal stability of rice bran microcrystalline cellulose were analyzed. The chemical compositions, scanning electron microscopy and Fourier-transform infrared analysis for rice bran microcrystalline cellulose showed that the lignin and hemicellulose were successfully removed from the rice bran fiber matrix. The morphology of rice bran microcrystalline cellulose was shown to be of a short rod-shaped porous structure with an average diameter of 65.3 µm. The polymerization degree of rice bran microcrystalline cellulose was 150. The X-ray diffraction pattern of rice bran microcrystalline cellulose showed the characteristic peak of natural cellulose (type I), and its crystallization index was 71%. The rice bran microcrystalline cellulose may be used in biological composites with temperatures between 150 °C and 250 °C. CONCLUSION: These results suggest the feasibility of using rice bran as a low-price source of microcrystalline cellulose. © 2024 Society of Chemical Industry.

19.
Food Res Int ; 193: 114847, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160052

RESUMO

Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF. The highest extraction yield was observed with alkali enzyme concentration (50 µL/g) treatment, resulting in 2 % SDF and 59.5 % IDF at 24 h of extraction. The results indicate that cellulase-AC enzyme aids in the hydrolysis of higher polysaccharides, leading to structural alterations in DRB and an increase in DF yield. Furthermore, the disruption of intra-molecular hydrogen bonding between oligosaccharides and the starch matrix helps to increase in DF yield, was also confirmed through FTIR and SEM. The extracted DF soluble and insoluble was then used to develop rice porridge. Sensory evaluation using fuzzy logic analysis reported the highest scores for samples containing 0.5 % insoluble DF and 1.25 % soluble DF.


Assuntos
Álcalis , Fibras na Dieta , Oryza , Oryza/química , Fibras na Dieta/análise , Álcalis/química , Solubilidade , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Celulase/metabolismo , Celulase/química , Manipulação de Alimentos/métodos , Cristalização
20.
Mass Spectrom (Tokyo) ; 13(1): A0151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161737

RESUMO

Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA