Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Vet World ; 16(4): 752-765, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37235155

RESUMO

Zoonotic Brugia pahangi parasite infections in humans have emerged over two decades in Southeast Asia (SEA), including Malaysia and Thailand. The species is commonly found in domestic cats and dogs as the natural reservoir hosts. The sporadic transmission pattern of B. pahangi zoonosis causes childhood infections in Thailand and adulthood infections in Malaysia. It is crucial to understand the vulnerability in how zoonotic B. pahangi parasite is transmitted to susceptible persons in receptive settings and the exposure to the infection under impoverished environment to which the human-vector-animal interactions are related. This acquisition of knowledge will help multiple health science professions to apply One Health approach to strengthening the capacity in diagnosis and surveillance, and hence detecting and monitoring the "lingering" zoonotic B. pahangi infections present in vulnerable populations in Thailand and elsewhere in SEA. In this review article, the authors focused on articulating the concepts of plantation-related zoonotic B. pahangi filariasis by updating current knowledge of B. pahangi life cycle, vector's life cycle and current state of research on the epidemiology and ecology of B. pahangi zoonosis.

2.
Heliyon ; 9(2): e13255, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846682

RESUMO

Filariasis is classified as a vector-borne zoonotic disease caused by several filarial nematodes. The disease is widely distributed in tropical and subtropical regions. Understanding the relationship between mosquito vectors, filarial parasites, and vertebrate hosts is therefore essential for determining the probability of disease transmission and, correspondingly, developing effective strategies for prevention and control of diseases. In this study, we aimed to investigate the infection of zoonotic filarial nematodes in field-caught mosquitoes, observe the potential vectors of filaria parasites in Thailand using a molecular-based survey, conduct a study of host-parasite relationship, and propose possible coevolution of the parasites and their hosts. Mosquitoes were collected around cattle farms in Bangkok, Nakhon Si Thammarat, Ratchaburi, and Lampang provinces from May to December 2021 using a CDC Backpack aspirator for 20-30 minutes in each area (intra-, peri-, and wild environment). All mosquitoes were identified and morphologically dissected to demonstrate the live larvae of the filarial nematode. Furthermore, all samples were tested for filarial infections using PCR and sequencing. A total of 1,273 adult female mosquitoes consisted of five species: 37.78% Culex quinquefasciatus, 22.47% Armigeres subalbatus, 4.71% Cx. tritaeniorhynchus, 19.72% Anopheles peditaeniatus, and 15.32% An. dirus. Larvae of Brugia pahangi and Setaria labiatopapillosa were found in Ar. subalbatus and An. dirus mosquitoes, respectively. All mosquito samples were processed by PCR of ITS1 and COXI genes for filaria nematode species identification. Both genes showed that B. pahangi was found in four mosquitoes of Ar. subalbatus from Nakhon Si Thammarat, S. digitata was detected in three samples of An. peditaeniatus from Lampang, and S. labiatopapillosa was detected in one of An. dirus from Ratchaburi. However, filarial nematodes were not found in all Culex species. This study infers that this is the first data regarding the circulation of Setaria parasites in Anopheles spp. from Thailand. The phylogenetic trees of the hosts and parasites are congruent. Moreover, the data could be used to develop more effective prevention and control strategies for zoonotic filarial nematodes before they spread in Thailand.

3.
mBio ; 13(3): e0374221, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35475643

RESUMO

Lymphatic filariasis is a debilitating disease that afflicts over 70 million people worldwide. It is caused by the parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Despite substantial success, efforts to eliminate LF will likely require more time and resources than predicted. Identifying new drug and vaccine targets in adult filariae could help elimination efforts. This study's aim was to evaluate intestinal proteins in adult Brugia malayi worms as possible therapeutic targets. Using short interfering RNA (siRNA), we successfully targeted four candidate gene transcripts: Bma-Serpin, Bma-ShTK, Bma-Reprolysin, and Bma-LAD-2. Of those, Bma-LAD-2, an immunoglobulin superfamily cell adhesion molecule (IgSF CAM), was determined to be essential for adult worm survival. We observed a 70.42% knockdown in Bma-LAD-2 transcript levels 1 day post-siRNA incubation and an 87.02% reduction in protein expression 2 days post-siRNA incubation. This inhibition of Bma-LAD-2 expression resulted in an 80% decrease in worm motility over 6 days, a 93.43% reduction in microfilaria release (Mf) by day 6 post-siRNA incubation, and a dramatic decrease in (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Transmission electron microscopy revealed the loss of microvilli and unraveling of mitochondrial cristae in the intestinal epithelium of Bma-LAD-2 siRNA-treated worms. Strikingly, Bma-LAD-2 siRNA-treated worms exhibited an almost complete loss of pseudocoelomic fluid. A luciferase immunoprecipitation system assay did not detect anti-Bma-LAD-2 IgE in the serum of 30 LF patients, indicating that LF exposure does not result in IgE sensitization to this antigen. These results indicate that Bma-LAD-2 is an essential protein for adult Brugia malayi and may be an effective therapeutic target. IMPORTANCE Brugia malayi is a parasitic nematode that can cause lymphatic filariasis, a debilitating disease prevalent in tropical and subtropical countries. Significant progress has been made toward eliminating the disease. However, complete eradication may require new therapeutics such as drugs or a vaccine that kill adult filariae. In this study, we identified an immunoglobulin superfamily cell adhesion molecule (Bma-LAD-2) as a potential drug and vaccine candidate. When we knocked down Bma-LAD-2 expression, we observed a decrease in worm motility, fecundity, and metabolism. We also visualized the loss of microvilli, destruction of the mitochondria in the intestinal epithelium, and loss of pseudocoelomic fluid contents after Bma-LAD-2 siRNA treatment. Finally, we demonstrated that serum from filaria-infected patients does not contain preexisting IgE to Bma-LAD-2, which indicates that this antigen would be safe to administer as a vaccine in populations where the disease is endemic.


Assuntos
Brugia Malayi , Moléculas de Adesão Celular , Filariose Linfática , Proteínas de Helminto , Animais , Brugia Malayi/genética , Adesão Celular , Moléculas de Adesão Celular/genética , Filariose Linfática/tratamento farmacológico , Proteínas de Helminto/genética , Humanos , Imunoglobulina E/sangue , RNA Interferente Pequeno/genética
4.
Pathog Glob Health ; 116(6): 356-364, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35287548

RESUMO

Information on the mosquito species that transmit canine filariosis is scanty. Hence, an experimental study was conducted to identify the potential vectors responsible for the transmission of D. immitis Leidy and B. pahangi Buckley & Edeson. A total of 367 mosquitoes belonging to six species containing both laboratory and field strains (i.e. Aedes togoi Theobald, Aedes aegypti Linnaeus, Aedes albopictus Skuse, Culex quinquefasciatus Say, Culex vishnui Theobald and Anopheles dirus Peyton & Harrison) were used in this study. All mosquitoes were artificially fed on either D. immitis or B. pahangi microfilariae (mfs) infected blood by using the Hemotek™ membrane feeding system. Out of 367 mosquitoes, 228 (64.9%) were fully engorged. After feeding on D. immitis (20%) and B. pahangi (33%) mfs positive blood, the mortality rates for Cx. quinquefasciatus were found to be slightly lower than that of other species of mosquitoes. On the other hand, majority of An. dirus were found to be incapable to withstand the infection of mfs as the mortality rates were relatively high (D. immitis = 71.4%; B. pahangi = 100.0%). Brugia pahangi was detected in Ae. togoi and Cx. quinquefasciatus with infection rates of 50% and 25%, respectively. Aedes togoi was the only species infected with D. immitis with an infection rate of 69%. Our results showed that Ae. togoi was an excellent experimental vector for both D. immitis and B. pahangi. This study also documented the observation of B. pahangi, for the first time in the head region of Cx. quinquefasciatus under a laboratory setting.


Assuntos
Aedes , Brugia pahangi , Culex , Culicidae , Dirofilaria immitis , Espirurídios , Animais , Cães , Larva , Mosquitos Vetores
5.
Acta Parasitol ; 67(1): 468-475, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34797497

RESUMO

PURPOSE: Canine filariosis in domestic dogs caused by several species of filarids is an emerging vector-borne disease and the spread of this disease remains a global veterinary and public health concern. However, information regarding these filarids and their epidemiological patterns remains scarce in Malaysia. The present study aimed to determine the infection rate and associated risk factors of filarial parasites in dogs in Malaysia. METHODS: A total of 399 dog blood samples were collected from veterinary hospitals and animal shelters in Malaysia to determine the infection rate and associated risk factors via a combination of microscopic, serologic and molecular diagnostic techniques. RESULTS: Two species of canine filariae identified in this study were Dirofilaria immitis (6.5%) and Brugia pahangi (1.3%), and their infections were associated with cross breed, medium size and short hair (p < 0.05). CONCLUSIONS: A new pair of primers was developed to complement the recovery of the 12S rRNA gene fragment of filarial parasites. This study represents the first molecular evidence of B. pahangi in dogs in Malaysia.


Assuntos
Dirofilaria immitis , Dirofilariose , Doenças do Cão , Filarioidea , Parasitos , Animais , Dirofilaria immitis/genética , Dirofilariose/diagnóstico , Dirofilariose/epidemiologia , Dirofilariose/parasitologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Malásia/epidemiologia
6.
J Helminthol ; 95: e72, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34879884

RESUMO

Since the exogenous compound tris(hydroxymethyl)aminomethane (Tris) showed a potent chemoattractant activity for Brugia pahangi infective third-stage larvae (L3), it was assumed that, in natural infection to a host, filarial L3 can be expected to recognize an endogenous Tris-related compound. In addition, a few amino acids have been identified as water-soluble attractants for second-stage juveniles of Meloidogyne incognita, a plant parasitic nematode. Therefore, the present study assesses the in vitro chemotactic responses of B. pahangi L3 to Tris-related compounds and amino acids using an agar-plate assay. Among Tris-related compounds, 2-amino-1,3-propanediol (APD) and 2-amino-2-methyl-1,3-propanediol (AMPD) exhibited a potent chemoattractant activity for filarial L3 at a level similar to Tris. Furthermore, arginine (Arg) was identified as a potent attractant for filarial L3 among amino acids. In addition, filarial L3 were attracted to Arg, APD and AMPD in mild alkaline conditions rather than acidic conditions. The chemoattractant activity of the three compounds for filarial L3 was observed in concentrations between 6.3 and 200 mm. This is the first report to demonstrate that Arg, APD and AMPD are potent chemoattractants for B. pahangi L3. Endogenous Arg and APD, in particular, may be involved in the regulation of the chemotactic behaviour of filarial L3 in the infection to a host. The present results will help to elucidate the mechanism of filarial skin-penetrating invasion of a host.


Assuntos
Brugia pahangi , Filarioidea , Aminoácidos , Animais , Larva , Trometamina
7.
Vet World ; 14(4): 860-864, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34083932

RESUMO

BACKGROUND AND AIM: Canine filariasis is caused by several species of filarial worms. The pathophysiological response to infection is mainly due to the filaria lifecycle. Laboratory detection methods to assess the pathological alterations characteristic of filariasis are needed urgently. Serum protein profiles and C-reactive protein (CRP) levels are used widely to diagnose several animal diseases. This study aimed to determine the serum protein profiles and CRP levels in dogs infected with Dirofilaria immitis or Brugia pahangi or both parasites. MATERIALS AND METHODS: Blood samples were collected from 980 dogs presenting at animal hospitals and veterinary clinics in Bangkok and its vicinity. The presence of microfilaria in samples was determined using a buffy coat smear and staining with Wright-Giemsa. The sheathed and unsheathed microfilaria species were identified by acid phosphatase staining. Forty positive samples were tested. The serum protein profiles were identified by agarose gel electrophoresis. The CRP concentration was measured using a fluorescent immunoassay. RESULTS: Albumin levels and albumin-to-globulin ratios were significantly lower, and total protein, ß2 globulin, and γ globulin levels were significantly elevated in dogs infected with D. immitis and B. pahangi compared with reference values in normal dogs. The average CRP concentrations in dogs infected with D. immitis or B. pahangi were 69.9 and 12.9 mg/L, respectively. CONCLUSION: The total protein and γ globulin levels increased in canine filariasis compared with the normal reference range. The CRP concentration in dogs infected with D. immitis was extremely high, whereas that in dog infected with B. pahangi was normal.

8.
One Health ; 13: 100261, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027007

RESUMO

In recent years, children in Thailand have been infected with zoonotic Brugia pahangi. However, the local environment of rubber or oil palm plantations, which would increase their exposure to risk factors of the infection due to mosquito transmission, is unclear. The present study first sought to determine the extent to which variations in the local landscape, such as the elevated versus low-lying ecotope of rubber or oil palm plantations, in a 2-km radius of the geographically defined landscape in a rural area of Suratthani, Southern Thailand could influence the abundance of Armigeres subalbatus and its susceptibility to zoonotic filarial parasite infections compared to Mansonia, Aedes, and Culex, and Coquillettidia. Thereafter, the filarial larvae found in the infected mosquitoes were molecularly investigated. Ar. subalbatus plantation ecotype was not only found to outnumber the local mosquitoes, but was identified as the predominant species that adapted well to the elevated ecotopes of the rubber or oil palm plantations, which existed at altitudes of 60-80 m. The overall rate of zoonotic filarial parasite infections (L1, L2, or L3 larvae) of Ar. subalbatus was 2.5% (95% CI, -0.2 to 4.1), with an average L3 load of 2.3 larvae per infected Ar. subalbatus (95% CI, -0.6 to 13.0); this is because the infections were found to be concentrated in the elevated ecotopes alone. Based on filarial orthologous ß-tubulin gene-specific touchup-nested PCR and sequence analysis using 30 L3 larva clones as representatives of 9 Ar. subalbatus infectious pools, Ar. subalbatus either carried B. pahangi or Dirofilaria immitis, or both species. Such findings suggest that Ar. subalbatus might have played an imperative role in the transmission of B. pahangi in the plantation areas infested with Ar. subalbatus.

9.
Vet Sci ; 8(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671040

RESUMO

We conducted a survey of canine microfilaraemia in 768 dogs in Chanthaburi, Samut Sakhon, and Narathiwat provinces of Thailand using a novel semi-automated, microfluidic device that is easy and rapid to perform. Microfilariae species were identified using High Resolution Melting real-time PCR (HRM real-time PCR). The prevalence of canine microfilaremia was 16.2% (45/278) in Chanthaburi and 5.5% (12/217) in Samut Sakhon. The prevalence of canine microfilaremia in Narathiwat was 22.7% (67/273). Brugia pahangi and Dirofilaria immitis were the predominant species of filariae found in the infected dogs from Chanthaburi and Narathiwat, respectively. The low prevalence of canine microfilaremia of Samut Sakhon may reflect the success of the Soi Dog foundation's efforts and the establishment of veterinary control programs. An effective disease control and prevention strategies is needed in Chanthaburi and Narathiwat to reduce the risks of zoonotic transmission of the parasites. An appropriate drug treatment should be given to infected dogs and prophylactic drugs are suggested to be given to dogs age ≤1-year-old to prevent filarial infection. The novel microfluidic device could be implemented for surveillance of filariae infection in other animals.

10.
Parasitol Int ; 80: 102203, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33027710

RESUMO

Extralymphatic filariasis is an uncommon phenomenon that can be caused by several lymphatic filarial species, including zoonotic filaria of animal origins. In this study, we report a case of a 64-year-old Thai woman who presented with a lump in her left breast that was diagnosed with invasive ductal carcinoma. At the same time, a small nodule was found in her right breast, via imaging study, without any abnormal symptoms. A core needle biopsy of the right breast nodule revealed a filarial-like nematode compatible with the adult stage of Brugia sp. A molecular identification of the nematode partial mt 12rRNA gene and ITS1 suggested the causative species as closely related to Brugia pahangi, a zoonotic lymphatic filaria of animals such as cats and dogs. The sequence of the partial mt 12rRNA and ITS1 gene in this patient was 94% and 99% identical to the previously reported sequence of mt 12rRNA and ITS1 genes of B. pahangi. The sequence of ITS1 gene is 99% similar to B. pahangi microfilaria from infected dogs in Bangkok, which was highly suspected of having a zoonotic origin. As far as we know, this is the first case report of B. pahangi filariasis presented with a breast mass concomitantly found in a patient with invasive ductal carcinoma. This raised serious concern regarding the zoonotic transmission of filariasis from natural animal reservoirs.


Assuntos
Doenças Mamárias/diagnóstico , Neoplasias da Mama/patologia , Brugia pahangi/isolamento & purificação , Carcinoma Ductal de Mama/patologia , Filariose/diagnóstico , Animais , Doenças Mamárias/parasitologia , Brugia pahangi/classificação , DNA Espaçador Ribossômico/análise , Feminino , Filariose/parasitologia , Humanos , Pessoa de Meia-Idade , RNA de Helmintos/análise , RNA Ribossômico/análise , Tailândia
11.
Animals (Basel) ; 11(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375359

RESUMO

Filariasis is emerging as a public health concern in tropical and subtropical areas. Filariasis is an endemic problem commonly found in southeast Asian countries. Using the PCR-restriction fragment length polymorphism (PCR-RFLP) of the ITS1 region with Vsp I, the overall prevalence rates of Dirofilaria immitis (12.2% (41/337); 95% confidence interval: 9.1-16.1%) and Brugia pahangi (8.3% (28/337); 95% confidence interval: 5.8-11.8%) were determined based on 337 free-roaming community dogs from 20 districts in Northern Thailand. Microfilaremia was found in only 6.2% of dogs (21/337). Co-infection with D. immitis and B. pahangi was observed in two dogs. Of the 215 blood samples examined using a Canine Heartworm Ag Kit, only 3.72% (eight dogs) were D. immitis antigen positive. Among these eight, six dogs had occult D. immitis infections. In terms of geographic distribution, we found the abundance of D. immitis and B. pahangi in the central areas at altitudes less than 400 m to be 12.1% and 10.3%, respectively. In contrast, at higher altitudes between 400 and 800 m, a significantly higher number of B. pahangi compared with D. immitis infected individuals were observed at 14.29% and 4.1%, respectively. In conclusion, D. immitis and B. pahangi were the most common filarial infections found in community dogs in Northern Thailand. Dogs might be an important reservoir of B. pahangi in that region. Increasing awareness and concern and including proper deworming programs for community dogs should be endorsed to reduce the transmission risk. Additionally, the population dynamics of the mosquito vector of B. pahangi across altitudinal gradients deserved further investigation.

12.
Parasitol Res ; 119(4): 1301-1315, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32179986

RESUMO

Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.


Assuntos
Brugia pahangi/imunologia , Filariose/veterinária , Gerbillinae/parasitologia , Malária/veterinária , Plasmodium berghei/imunologia , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Citocinas/sangue , Feminino , Filariose/parasitologia , Interações Hospedeiro-Parasita/imunologia , Hipoglicemia/parasitologia , Malária/parasitologia , Masculino , Mosquitos Vetores/parasitologia , Parasitemia/parasitologia , Parasitemia/veterinária , Taxa de Sobrevida
13.
Artigo em Inglês | MEDLINE | ID: mdl-31869759

RESUMO

The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.


Assuntos
Antibacterianos/uso terapêutico , Filariose/tratamento farmacológico , Oncocercose/tratamento farmacológico , Quinazolinas/uso terapêutico , Wolbachia/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Brugia pahangi/efeitos dos fármacos , Feminino , Filariose/microbiologia , Filarioidea/efeitos dos fármacos , Gerbillinae/microbiologia , Gerbillinae/parasitologia , Microfilárias/efeitos dos fármacos , Quinazolinas/administração & dosagem , Simbiose/efeitos dos fármacos
14.
Parasitol Res ; 118(4): 1289-1297, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30746583

RESUMO

Lymphatic filariae are important human and animal parasites. Infection by these parasites could lead to severe morbidity and has significant socioeconomic impacts. Topical selamectin is a semi-synthetic macrocyclic lactone that is widely used to prevent heartworm infection. Up until now, there were no studies that investigated the efficacy of selamectin in lymphatic filariae. Therefore, we aimed to study the chemotherapeutic and chemoprophylactic efficacies of selamectin use for cats in brugian filariasis-endemic areas in Southern Thailand. To assess chemotherapeutic efficacy of topical selamectin, eight Brugia malayi and six Brugia pahangi microfilaremic cats were treated with a single administration of topical selamectin. For chemoprophylactic efficacy assessment, a single application of topical selamectin was administrated to 9 healthy, uninfected cats. The cats in both groups were subjected to a monthly blood testing for microfilariae and filarial DNA for 1 year. Topical selamectin treatment in B. malayi and B. pahangi microfilaremic cats showed 100% effectivity in eradicating microfilaremia but only 78.5% effectivity in eliminating filarial DNA. In the chemoprophylactic group, selamectin demonstrated 66.7% efficacy in preventing B. malayi infection. Our findings suggest that a single administration of 6 mg/kg topical selamectin given every two months could effectively prevent B. malayi infection. Application of topical selamectin twice a year could block circulating microfilariae. Since there are no treatment guidelines currently available for lymphatic filarial infection in cats, the data obtained from this study could be used to guide the management of brugian lymphatic filarial infection in reservoir cats.


Assuntos
Antiparasitários/uso terapêutico , Brugia Malayi/efeitos dos fármacos , Brugia pahangi/efeitos dos fármacos , Filariose Linfática/tratamento farmacológico , Filariose Linfática/veterinária , Ivermectina/análogos & derivados , Animais , Gatos , Quimioprevenção/métodos , Filariose Linfática/parasitologia , Humanos , Ivermectina/uso terapêutico , Microfilárias/crescimento & desenvolvimento , Tailândia
15.
Pathog Glob Health ; 111(7): 388-394, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29065795

RESUMO

Lymphatic filariasis (LF) is a vector borne disease caused by parasitic worms such as Wuchereria bancrofti, Brugia malayi and B. timori, which are transmitted by mosquitoes. Current therapeutics to treat LF are mainly microfilarcidal, and lack activity against adult worms. This set back, poses a challenge for the control and elimination of filariasis. Thus, in this study the activities of caffeic acid phenethyl ester (CAPE) against the filarial worm B. pahangi and its bacterial endosymbiont, Wolbachia were evaluated. Different concentrations (2, 5, 10, 15, 20 µg/ml) of CAPE were used to assess its effects on motility, viability and microfilarial (mf) production of B. pahangi in vitro. Anti-Wolbachial activity of CAPE was measured in worms by quantification of Wolbachial wsp gene copy number using real-time polymerase chain reaction. Our findings show that CAPE was found to significantly reduce adult worm motility, viability, and mf release both in vitro and in vivo. 20 µg/ml of CAPE halts the release of mf in vitro by day 6 of post treatment. Also, the number of adult worms recovered in vivo were reduced significantly during and after treatment with 50 mg/kg of CAPE relative to control drugs, diethylcarbamazine and doxycycline. Real time PCR based on the Wolbachia ftsZ gene revealed a significant reduction in Wolbachia copy number upon treatment. Anti-Wolbachia and antifilarial properties of CAPE require further investigation as an alternative strategy to treat LF.


Assuntos
Brugia pahangi/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Filariose/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Animais , Ácidos Cafeicos/administração & dosagem , Relação Dose-Resposta a Droga , Filariose/parasitologia , Gerbillinae , Humanos , Masculino , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/uso terapêutico , Wolbachia/efeitos dos fármacos
16.
Korean J Parasitol ; 54(3): 273-80, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27417081

RESUMO

We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.


Assuntos
Antibacterianos/farmacologia , Brugia pahangi/efeitos dos fármacos , Filaricidas/farmacologia , Flores/química , Melaleuca/química , Extratos Vegetais/farmacologia , Wolbachia/efeitos dos fármacos , Aedes , Animais , Antibacterianos/isolamento & purificação , Bioensaio , Linhagem Celular , Feminino , Filaricidas/isolamento & purificação , Locomoção/efeitos dos fármacos , Masculino , Metanol , Microscopia Eletrônica , Extratos Vegetais/isolamento & purificação , Reação em Cadeia da Polimerase , Solventes , Simbiose/efeitos dos fármacos
17.
Vector Borne Zoonotic Dis ; 15(8): 473-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26273808

RESUMO

BACKGROUND: Apart from infection with human filariae, zoonotic filariasis also occurs worldwide, and the numbers of cases have been increasing steadily. Diagnosis of intact filariae in tissues or organs depends on histological identification. The morphology of parasites in tissue-embedded sections is poor and shows high levels of homoplasy. Thus, the use of morphological characteristics in taxonomic studies is difficult and may not allow a specific diagnosis. METHODS: Here we report the use of real-time PCR with high-resolution melting analysis (HRM) to detect and identify Brugia malayi, Brugia pahangi, Wuchereria bancrofti, and Dirofilaria immitis in paraffin-embedded sections. Assay specificity was determined using other tissue-dwelling parasites, Angiostrongylus cantonensis, Gnathostoma spinigerum, and Cysticercus cellulosae. We also developed a quick paraffin removal protocol. RESULTS: Both human and animal filariae in formalin-fixed paraffin-embedded sections (FFPES) were diagnosed and identified rapidly, whereas other parasites were negative. There was no difference in the melting temperature of products amplified from filarial DNA obtained from unstained FFPES and Hematoxylin & Eosin-stained sections. Therefore, the DNA extraction protocols developed in this study could be used for real-time PCR with HRM. CONCLUSIONS: We report the successful application of a HRM-PCR assay to differentiate four filarial parasites in FFPES, thus providing the pathologist with an effective alternative diagnostic procedure. Furthermore, the quick paraffin removal protocol developed could shorten the duration and number of steps required for paraffin removal using a standard protocol.


Assuntos
Brugia Malayi/isolamento & purificação , Brugia pahangi/isolamento & purificação , Dirofilaria immitis/isolamento & purificação , Filariose/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Wuchereria bancrofti/isolamento & purificação , Animais , Brugia Malayi/genética , Brugia pahangi/genética , DNA de Helmintos/isolamento & purificação , Dirofilaria immitis/genética , Feminino , Filariose/patologia , Humanos , Inclusão em Parafina , Sensibilidade e Especificidade , Wuchereria bancrofti/genética , Zoonoses
18.
Exp Parasitol ; 135(2): 446-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23981910

RESUMO

Previous studies have shown that intradermally (ID) injected Brugia pahangi L3 s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3 s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.


Assuntos
Antígenos de Helmintos/imunologia , Brugia pahangi/imunologia , Filariose/imunologia , Proteínas de Helminto/imunologia , Sistema Linfático/patologia , Animais , Anticorpos Anti-Helmínticos/biossíntese , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/química , Western Blotting , Brugia pahangi/crescimento & desenvolvimento , Brugia pahangi/fisiologia , Eletroforese em Gel de Poliacrilamida , Feminino , Filariose/parasitologia , Filariose/patologia , Gerbillinae , Coração/parasitologia , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/química , Imunização/métodos , Imunoglobulina G/biossíntese , Larva/imunologia , Larva/fisiologia , Pulmão/parasitologia , Linfonodos/parasitologia , Linfonodos/patologia , Sistema Linfático/parasitologia , Masculino
19.
Korean J Parasitol ; 51(6): 645-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24516268

RESUMO

A simple, rapid, and high-throughput method for detection and identification of Wuchereria bancrofti, Brugia malayi, Brugia pahangi, and Dirofilaria immitis in mosquito vectors and blood samples was developed using a real-time PCR combined with high-resolution melting (HRM) analysis. Amplicons of the 4 filarial species were generated from 5S rRNA and spliced leader sequences by the real-time PCR and their melting temperatures were determined by the HRM method. Melting of amplicons from W. bancrofti, B. malayi, D. immitis, and B. pahangi peaked at 81.5±0.2℃, 79.0±0.3℃, 76.8±0.1℃, and 79.9±0.1℃, respectively. This assay is relatively cheap since it does not require synthesis of hybridization probes. Its sensitivity and specificity were 100%. It is a rapid and technically simple approach, and an important tool for population surveys as well as molecular xenomonitoring of parasites in vectors.


Assuntos
Sangue/parasitologia , Brugia/isolamento & purificação , Culicidae/parasitologia , Dirofilaria immitis/isolamento & purificação , Parasitologia/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Wuchereria bancrofti/isolamento & purificação , Animais , Brugia/classificação , Brugia/genética , Gatos , Dirofilaria immitis/classificação , Dirofilaria immitis/genética , Cães , Humanos , Masculino , RNA de Helmintos/genética , RNA Ribossômico 5S/genética , Sensibilidade e Especificidade , Temperatura de Transição , Wuchereria bancrofti/classificação , Wuchereria bancrofti/genética
20.
Korean J Parasitol ; 51(6): 759-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24516287

RESUMO

Lymphatic filariasis is a common parasitic disease of cats in tropical regions including Thailand. The objective of this study was to determine the efficacy of ivermectin against microfilariae of Brugia pahangi in naturally infected cats. Eight cats naturally infected with B. pahangi were divided into control (untreated) and treated groups. Cats in the latter group were given ivermectin injection at 400 µg/kg weekly for 2 months. Microfilariae were counted every week until 48 weeks. Microfilaremia was significantly decreased in the treated group 4 weeks after starting the treatment and become zero at week 9 and afterwards. On the other hand, cats in the control group had high microfilaremia throughout the study. It was successful to treat and control B. pahangi infection in naturally infected cats using ivermectin.


Assuntos
Brugia pahangi/isolamento & purificação , Doenças do Gato/tratamento farmacológico , Doenças do Gato/parasitologia , Filariose Linfática/veterinária , Filaricidas/administração & dosagem , Ivermectina/administração & dosagem , Animais , Gatos , Filariose Linfática/tratamento farmacológico , Filariose Linfática/parasitologia , Carga Parasitária , Tailândia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA