Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175257, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122029

RESUMO

Over the last century, many peatlands in northern Europe have been drained for forestry. Forest management with different harvesting regimes has a significant impact on soil water status and consequently on greenhouse gas emissions from peat soils. In this paper, we have used the process-based JSBACH-HIMMELI model to simulate the effects of alternative harvesting regimes, namely non-harvested (NH), selection harvesting (SH; 70 % of stem volume harvested) and clear-cutting (CC; 100 % of stem volume harvested), on soil CH4 and CO2 fluxes in peatland forests. We modified the model to account for the specific characteristics of peatland forests, where the water level (WL) is generally low and is regulated by the amount of aboveground vegetation through evapotranspiration. Multi-year measurements before and after the forest harvesting in a nutrient-rich peatland forest in southern Finland were used to constrain the model. The results showed that the modified model was able to reproduce the seasonal dynamics of water level, soil CH4 and soil CO2 fluxes under alternative harvesting regimes with reasonable accuracy. The averaged Pearson's r (Pearson correlation coefficient) and RMSE (Root Mean Square Error) between the model and the measurement were 0.75 and 7.3 cm for WL, 0.75 and 0.23 nmol m-2 s-1 for soil CH4 flux, 0.73 and 0. 88 µmol m-2 s-1 for soil CO2 flux. The modified model successfully reproduced soil CH4 uptake at both NH and SH sites and soil CH4 emission at the CC site, as observed in the measurements. Our study showed that increasing harvesting intensity (NH â†’ SH â†’ CC) in the model increased soil CH4 emission and decreased soil CO2 emission on an annual basis, but the magnitude of the decreased soil CO2 emission was much larger than that of the increased soil CH4 emission when comparing their global warming potentials. Therefore, in the short term as in our study (first three years after the harvest), the climate impacts of the soil GHG was reduced more in CC than in SH, which yet can be fundamentally different when considering in the long term.

2.
Sci Rep ; 14(1): 14466, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914699

RESUMO

The forest soil methane (CH4) flux exhibits high spatiotemporal variability. Understanding these variations and their driving factors is crucial for accurately assessing the forest CH4 budget. In this study, we monitored the diurnal and seasonal variations in soil CH4 fluxes in two poplar (Populus spp.) plantations (Sihong and Dongtai) with different soil textures using the static chamber-based method. The results showed that the annual average soil CH4 flux in the Sihong and Dongtai poplar plantations was 4.27 ± 1.37 kg CH4-C ha-1 yr-1 and 1.92 ± 1.07 kg CH4-C ha-1 yr-1, respectively. Both plantations exhibited net CH4 emissions during the growing season, with only weak CH4 absorption (-0.01 to -0.007 mg m-2 h-1) during the non-growing season. Notably, there was a significant difference in soil CH4 flux between the clay loam of the Sihong poplar plantation and the sandy loam of the Dongtai poplar plantation. From August to December 2019 and from July to August and November 2020, the soil CH4 flux in the Sihong poplar plantation was significantly higher than in the Dongtai poplar plantation. Moreover, the soil CH4 flux significantly increased with rising soil temperature and soil water content. Diurnally, the soil CH4 flux followed a unimodal variation pattern at different growing stages of poplars, with peaks occurring at noon and in the afternoon. However, the soil CH4 flux did not exhibit a consistent seasonal pattern across different years, likely due to substantial variations in precipitation and soil water content. Overall, our study emphasizes the need for a comprehensive understanding of the spatiotemporal variations in forest soil CH4 flux with different soil textures. This understanding is vital for developing reasonable forest management strategies and reducing uncertainties in the global CH4 budget.

3.
Environ Res ; 245: 117959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123047

RESUMO

Lake eutrophication mitigation measures have been implemented by ecological water diversion, however, the responses of carbon cycle to the human-derived hydrologic process still remains unclear. With a famous river-to-lake water diversion activity at eutrophic Lake Taihu, we attempted to fill the knowledge gap with integrative field measurements (2011-2017) of gas carbon (CO2 and CH4) flux, including CO2-equivalent, and dissolved carbon (DOC and DIC) at water-receiving zone and reference zone. Overall, results showed the artificial water diversion activity increased gas carbon emissions. At water-receiving zone, total gas carbon (expressed as CO2-equivalent) emissions increased significantly due to the occurring of water diversion, with CO2 flux increasing from 9.31 ± 16.28 to 18.16 ± 12.96 mmol C m-2 d-1. Meanwhile, CH4 emissions at water-receiving zone (0.06 ± 0.05 mmol C m-2 d-1) was double of that at reference zone. Water diversion decreased DOC but increased DIC especially at inflowing river mouth. Temporal variability of carbon emissions and dissolved carbon were linked to water temperature, chlorophyll a, and nutrient, but less or negligible dependency on these environment variables were found with diversion occurring. Water diversion may increase gas carbon production via stimulating DOC mineralization with nutrient enrichment, which potentially contribute to increasing carbon emissions and decreasing DOC at the same time and the significant correlation between CO2 flux and CH4 flux. Our study provided new insights into carbon biogeochemical processes, which may help to predict carbon fate under hydrologic changes of lakes.


Assuntos
Lagos , Água , Humanos , Carbono , Dióxido de Carbono/análise , Clorofila A , China , Metano/análise
4.
J Environ Manage ; 347: 119093, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783080

RESUMO

Eutrophic lakes are a major source of the atmospheric greenhouse gas methane (CH4), and CH4 ebullition emissions from inland lakes have important implications for the carbon cycle. However, the spatio-temporal heterogeneity of CH4 ebullition emission and its influencing factors in shallow eutrophic lakes of arid and semi-arid regions remain unclear. This study aimed to determine the mechanism of CH4 emission via eutrophication in Lake Ulansuhai, a large shallow eutrophic lake in a semi-arid region of China.To this end, monthly field surveys were conducted from May to October 2021, and gas chromatography was applied using the headspace equilibrium technique with an inverted funnel arrangement. The total CH4 fluxes ranged from 0.102 mmol m-2 d-1 to 59.296 mmol m-2 d-1 with an average value of 4.984 ± 1.82 mmol m-2 d-1. CH4 ebullition emissions showed significant temporal and spatial variations. The highest CH4 ebullition emission was observed in July with a grand mean of 9.299 mmol m-2 d-1, and the lowest CH4 ebullition emissions occurred in October with an average of 0.235 mmol m-2 d-1. Among seven sites (S1-S7), the maximum (3.657 mmol m-2 d-1) and minimum (1.297 mmol m-2 d-1). CH4 ebullition emissions were observed at S2 and S7, respectively. As the main route of CH4 emission to the atmosphere in Lake Ulansuhai, the CH4 ebullition flux during May to October accounted for 69% of the total CH4 flux. Statistical analysis showed that CH4 ebullition was positively correlated with temperature (R = 0.391, P < 0.01) and negatively correlated with air pressure (R = 0.286, P < 0.00). Temperature and air pressure were found to strongly regulate the production and oxidation of CH4. Moreover, nutritional status indicators such as TP and NH4+-N significantly affect CH4 ebullition emissions (R = 0.232, P < 0.01; R = -0.241, P < 0.01). This study reveals the influencing factors of CH4 ebullition emission in Lake Ulansuhai, and provides theoretical reference and data support for carbon emission from eutrophic lakes. Nevertheless, research on eutrophic shallow lakes needs to be further strengthened. Future research should incorporate improved flux measurement techniques with process-based models to improve the accuracy from regional to large-scale estimation of CH4 emissions and clarify the carbon budget of aquatic ecosystems. In this manner, the understanding and predictability of CH4 ebullition emission from shallow lakes can be improved.


Assuntos
Lagos , Metano , Metano/análise , Ecossistema , China , Carbono/análise
5.
Sci Total Environ ; 887: 163448, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37146796

RESUMO

Methane (CH4) is a critical greenhouse gas, and wetlands are the largest natural emitters of CH4. Owing to global climate change and the intensification of anthropogenic activities, the input of exogenous nutrients such as nitrogen (N) and phosphorus (P) into wetland ecosystems has increased, which may significantly affect nutrient cycling and CH4 fluxes from wetlands. However, the environmental and microbial effects of the addition of N and P on CH4 emissions from alpine wetlands have not been thoroughly examined. We conducted a two-year field experiment with N and P addition to examine its impact on CH4 emissions from wetlands on the Qinghai-Tibet Plateau (QTP). The treatments comprised a blank control (CK), N addition (15 kg N ha-1 yr-1, N15), P addition (15 kg P ha-1 yr-1, P15), and NP co-addition (15 kg NP ha-1 yr-1, N15P15). We measured CH4 flux, soil environmental factors, and microbial community structure for each treatment plot. The results showed that the CH4 emissions of N and P addition were higher than CK. Specifically, the CH4 fluxes of N15, P15, and N15P15 treatments were 0.46 mg CH4 m-2 h-1, 4.83 mg CH4 m-2 h-1, and 0.95 mg CH4 m-2 h-1 higher than the CK. Additionally, the CH4 fluxes of N15P15 treatments was 3.88 mg CH4 m-2 h-1 lower than the P15 and 0.49 mg CH4 m-2 h-1 higher than the N15. This finding indicated that the CH4 flux in the alpine wetland soil was more sensitive to the addition of P. N and P addition increased not only soil organic carbon content (P < 0.05) but also the relative abundance of Chloroflexi and Actinobacteria in the soil, which may be the main reason for the promotion of CH4 emissions. Therefore, our results indicate that N and P addition can change the microbial abundance and community structure of wetland soil, and the distribution of soil carbon, promote CH4 emissions, and ultimately affect the carbon sink function of wetland ecosystems.

6.
Life (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37109391

RESUMO

The present study reviewed the carbon-biogeochemistry-related observations concerning CO2 and CH4 dynamics in the estuaries adjoining the Indian Sundarbans mangrove ecosystem. The review focused on the partial pressure of CO2 and CH4 [pCO2(water) and pCH4(water)] and air-water CO2 and CH4 fluxes and their physical, biogeochemical, and hydrological drivers. The riverine-freshwater-rich Hooghly estuary has always exhibited higher CO2 emissions than the marine-water-dominated Sundarbans estuaries. The mangrove sediment porewater and recirculated groundwater were rich in pCO2(water) and pCH4(water), enhancing their load in the adjacent estuaries. Freshwater-seawater admixing, photosynthetically active radiation, primary productivity, and porewater/groundwater input were the principal factors that regulated pCO2(water) and pCH4(water) and their fluxes. Higher chlorophyll-a concentrations, indicating higher primary production, led to the furnishing of more organic substrates that underwent anaerobic degradation to produce CH4 in the water column. The northern Bay of Bengal seawater had a high carbonate buffering capacity that reduced the pCO2(water) and water-to-air CO2 fluxes in the Sundarbans estuaries. Several authors traced the degradation of organic matter to DIC, mainly following the denitrification pathway (and pathways between aerobic respiration and carbonate dissolution). Overall, this review collated the significant findings on the carbon biogeochemistry of Sundarbans estuaries and discussed the areas that require attention in the future.

7.
Huan Jing Ke Xue ; 44(3): 1572-1582, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922218

RESUMO

Paddy fields are complex ecosystems that both emit CH4 and absorb CO2, which plays an important role in the global water-carbon cycle and carbon budget. In this study, the CH4 fluxes and CO2 fluxes of double-cropping direct-seeded rice fields in 2020 in the Poyang Lake Plain were obtained using the eddy covariance method, and the variation characteristics, accumulation in the whole growth period, and comprehensive greenhouse effects of two greenhouse gases were quantitatively revealed. The results showed that, the double-cropping direct-seeded rice field in Poyang Lake Plain was the source of CH4 emission, and the emission during the whole growth period was 52.6 g·m-2, with an average daily emission of 0.208 g·(m2·d)-1. CH4 emission and daily average emission in the early rice season were 20.7 g·m-2 and 0.188 g·(m2·d)-1, respectively, which were lower than the emissions of 31.9 g·m-2 and 0.255 g·(m2·d)-1 in the late rice season. CH4 flux had significant seasonal variation characteristics. The strong emission period (emission peak) of CH4 was concentrated in the middle growth stage of early rice and the early growth stage of late rice. A total of 85.5% of CH4 in the early rice season and 92.1% of CH4 in the late rice season were released during the strong emission periods, and seasonal peak values were 0.638 g·(m2·d)-1 and 1.282 g·(m2·d)-1, respectively. The diurnal variation characteristics of CH4 flux showed three types:obvious unimodal type, non-obvious unimodal type, and irregular type. The strong emission period was mainly the unimodal type, and the peak values of 0.453 µmol·(m2·s)-1 in the early rice season and 0.977 µmol·(m2·s)-1 in the late rice season appeared at 14:00-15:00 and maintained a high emission rate at 12:30-16:00. The CO2 accumulation in the whole growth period of early rice and late rice was -990.4 g·m-2 and -1156.6 g·m-2, respectively, and the total was -2147.0 g·m-2. The comprehensive greenhouse effect of CH4 emission and CO2 exchange in the double-cropping paddy field was -673.6 g·m-2 (calculated using the CO2 equivalent), which showed a cooling effect. Excluding CH4 emissions when evaluating the greenhouse effect of the paddy field, the CO2 equivalent emission of 1473.4 g·m-2 would be underestimated, accounting for 68.6% of the net CO2 absorption. Considering CH4 emissions, CO2 exchanges, and carbon emissions caused by rice harvest, the two-season direct seeding paddy field in Poyang Lake Plain was the source of greenhouse gas emissions.

8.
Heliyon ; 9(1): e12984, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704269

RESUMO

Irregular precipitation caused by climate changes has resulted in frequent events of soil drying-rewetting cycles (DWC), which can strongly affect soil carbon (C) and nitrogen (N) cycling, including the fluxes of greenhouse gases (GHGs). The response of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes to DWC events may differ among different ecosystem types and vary with experimental settings and soil properties, but these processes were not quantitatively assessed. Here, we evaluated the responses of soil GHG fluxes to DWC, compared with consistent moisture, as well as the associated driving factors with 424 paired observations collected from 47 publications of lab incubation experiments. Results showed that: (1) DWC significantly decreased soil CO2 emissions by an average of 9.7%, but did not affect the emissions and uptakes of soil CH4 and N2O; (2) DWC effects on soil GHG emissions varied significantly among different ecosystem types, with CO2 emissions significantly decreased by 6.8 and 16.3% in croplands and grasslands soils, respectively, and CH4 and N2O emissions significantly decreased and increased in wetlands and forests soils, respectively; (3) the effects of DWC on CO2 emissions were also positively regulated by organic C and N concentrations, pH, clay concentration, and soil depth, but negatively by C:N ratio and silt concentration, while DWC effects on N2O emissions were negatively controlled by C:N ratio, silt concentration, and soil depth. Overall, our results showed that CO2 emissions were significantly decreased by DWC, while the fluxes of CH4 and N2O were not affected, indicating an overall decrease of GHGs in response to DWC. Our results will be useful for a better understanding of global GHG emissions under future climate change scenario.

9.
New Phytol ; 238(2): 584-597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631959

RESUMO

Trees are known to be atmospheric methane (CH4 ) emitters. Little is known about seasonal dynamics of tree CH4 fluxes and relationships to environmental conditions. That prevents the correct estimation of net annual tree and forest CH4 exchange. We aimed to explore the contribution of stem emissions to forest CH4 exchange. We determined seasonal CH4 fluxes of mature European beech (Fagus sylvatica) stems and adjacent soil in a typical temperate beech forest of the White Carpathians with high spatial heterogeneity in soil moisture. The beech stems were net annual CH4 sources, whereas the soil was a net CH4 sink. High CH4 emitters showed clear seasonality in their stem CH4 emissions that followed stem CO2 efflux. Elevated CH4 fluxes were detected during the vegetation season. Observed high spatial variability in stem CH4 emissions was neither explicably by soil CH4 exchange nor by CH4 concentrations, water content, or temperature studied in soil profiles near each measured tree. The stem CH4 emissions offset the soil CH4 uptake by up to 46.5% and on average by 13% on stand level. In Central Europe, widely grown beech contributes markedly to seasonal dynamics of ecosystem CH4 exchange. Its contribution should be included into forest greenhouse gas flux inventories.


Assuntos
Fagus , Solo , Ecossistema , Metano , Florestas , Árvores , Dióxido de Carbono
10.
Sci Total Environ ; 859(Pt 1): 159917, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36343815

RESUMO

Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738-0.848, RMSE ranges of 31.94-149.22 mg C/m2d and MBE ranges of -66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47-20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale.


Assuntos
Metano , Oryza , Metano/análise , Agricultura/métodos , Solo/química , Água , China , Óxido Nitroso/análise
11.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2785-2795, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384615

RESUMO

Eddy covariance method has become a key technique to measure CH4 flux continuously in lakes. A large number of CH4 flux data was missing due to variable reasons. In order to reconstruct a complete time series of CH4 flux, it is necessary to find an appropriate gap-filling method to insert the CH4 flux data gap. Based on the routine meteorological data and CH4 flux data measured at Bifenggang site in the eastern part of the Taihu eddy flux network during 2014 to 2017, we analyzed the control factors of CH4 flux at the half-hour scale and daily scale. With those data, we tested that whether nonlinear regression method and two machine learning methods, random forest algorithm and error back propagation algorithm, could fill the CH4 flux gap at the half-hour scale and daily scale. The results showed that CH4 flux at the half-hour scale was mainly influenced by sediment temperature, friction velocity, air temperature, relative humidity, latent heat flux and water temperature at 20 cm in the growing season, and was mainly affected by relative humidity, latent heat flux, wind speed, sensible heat flux and sediment temperature in non-growing season. The CH4 flux at the daily scale was mainly affected by latent heat flux and relative humidity. Random forest model was the best in CH4 flux data gap filling at both time scales. The random forest model with the input variables of day of year, solar elevation angle, sediment temperature, friction velocity, air temperature, water temperature at 20 cm, relative humidity, air pressure, and wind speed was more suitable for filling the CH4 flux data gap at the half-hour scale. The random forest model with the input variables of day of year, sediment temperature, friction velocity, air temperature, water temperature at 20 cm, relative humidity, air pressure, wind speed, and downward shortwave radiation was more suitable for filling CH4 flux data gap at the day scale. The interpolation models could fill the data gap better at daily scale than that at the half-hour scale.


Assuntos
Lagos , Água , Estações do Ano , Temperatura , China
12.
Environ Pollut ; 314: 120246, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152718

RESUMO

Inland freshwater ecosystems are of increasing concerns in global methane (CH4) budget in the atmosphere. Agricultural irrigation watersheds are a potential CH4 emission hotspot owing to the anthropogenic carbon and nutrients loading. However, large-scale spatial variations of CH4 concentrations and fluxes in agricultural catchments remain poorly understood, constraining an accurate regional estimate of CH4 budgets. Here, we examined the spatiotemporal variations of dissolved CH4 concentrations and fluxes from typical freshwater types (ditch, reservoir and river) within an agricultural irrigation watershed from Hongze catchment, which is subjected to intensive agricultural and rural activities in Eastern China. The dissolved CH4 concentrations and fluxes showed similar temporal variations among the three freshwater types, with the highest rates in summer and the lowest rates in winter. The total CH4 emission from this agricultural irrigation watershed was estimated to be 0.002 Gg CH4 yr-1, with annual mean CH4 concentration and flux of 0.12 µmol L-1 and 0.58 mg m-2 d-1, respectively. Diffusive CH4 fluxes varied in samples taken from different freshwater types, the annual mean CH4 fluxes for ditch, reservoir and river were 0.31 ± 0.06, 0.71 ± 0.13 and 0.72 ± 0.25 mg m-2 d-1, respectively. Among three freshwater types, the CH4 fluxes were the lowest in ditch, which was associated with the lowest responses of CH4 fluxes to water dissolved oxygen (DO), nitrate nitrogen (NO3--N) and sediment dissolved organic carbon (DOC) concentrations in ditch. In addition, water velocity and wind speed were significantly lower in ditch than in reservoir and river, suggesting that they also played important roles in explaining the spatial variability of dissolved CH4 concentrations and fluxes. These results highlighted a need for more field measurements with wider spatial coverage and finer frequency, which would further improve the reliability of flux estimates for assessing the contribution of agricultural watersheds to the regional and global CH4 budgets.


Assuntos
Irrigação Agrícola , Ecossistema , Nitratos , Reprodutibilidade dos Testes , Água Doce , Metano/análise , Carbono/análise , Dióxido de Carbono/análise , Nitrogênio , China , Água , Oxigênio
13.
Environ Sci Pollut Res Int ; 29(47): 72045-72057, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35608766

RESUMO

Methane (CH4) emissions from reservoirs have received widespread attention. The central urban area of Chongqing in the Three Gorges Reservoir area was selected as the study area in 2020. The temporal and spatial distribution of dissolved CH4 concentration and flux, key generation pathways, and influencing factors have been studied. The dissolved CH4 concentration in low-water-level period and impoundment period varied from 0.037~0.12 µmol·L-1 and 0.11~0.23 µmol·L-1, with the average values of (0.066 ± 0.0067) µmol·L-1 and (0.13 ± 0.034) µmol·L-1. The CH4 flux was (0.941 ± 0.217) µmol·m-2·h-1 in low-water-level period and (1.915 ± 0.204) µmol·m-2·h-1 in impoundment period. CH4 was produced by CO2 reduction and acetic acid fermentation, accounting for 17.95% and 82.05% of the total CH4 production, respectively. The dissolved CH4 concentration was significantly positively correlated with DO and NO3--N, and it is opposite with dissolved inorganic carbon. The dissolved CH4 concentration in this study area is affected by water environment (33.42%), inorganic nitrogen (29.60%), organic carbon (23.88%), and inorganic carbon (13.10%), and anthropogenic influences promoted dissolved CH4 concentration.


Assuntos
Dióxido de Carbono , Metano , Carbono , Dióxido de Carbono/análise , China , Metano/análise , Nitrogênio , Água
14.
Sci Total Environ ; 838(Pt 2): 156059, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35598672

RESUMO

Freshwater lakes are recognized as potential sources of greenhouse gases (GHGs) that contribute to global warming. However, the spatiotemporal patterns of GHG emissions have not been adequately quantified in large deep lakes, resulting in substantial uncertainties in the estimated GHG budgets in global lakes. In this study, the spatial and seasonal variability of diffusive GHG (CO2, CH4, and N2O) emissions from Lake Fuxian located on a plateau in Southwestern China were quantified. The results showed that the surface lake water was oversaturated with dissolved GHG concentrations, and the average concentrations were 24.25 µM CO2, 0.044 µM CH4, and 14.28 nM N2O, with diffusive emission rates of 8.82 mmol CO2 m-2 d-1, 31.94 µmol CH4 m-2 d-1, and 4.94 µmol N2O m-2 d-1, respectively. Diffusive CH4 flux exhibited high temporal and spatial variability similar to that in most lakes. In contrast, diffusive CO2 and N2O flux showed distinct seasonal variability and similar spatial patterns, emphasizing the necessity for increasing the temporal resolution in GHG flux measurements for integrated assessments. Water temperature and/or oxygen concentrations were crucial in regulating seasonal variability in GHG emissions. However, no limnological parameter was found to govern the spatial GHG patterns. The frequent advection mixing caused by wind-driven currents might be the reason for the low spatial heterogeneity in GHGs, in which the inconspicuous mechanism requires further research. It was recommended that at least 11 locations were needed for representative whole lake flux estimates at each sampling campaign. In addition, the maximum peak of CH4 in the oxycline from Lake Fuxian indicated that low CH4 oxidation occurred in oxic waters. Overall, this study suggests that, compared to other tropical and temperate lakes, this alpine deep lake is a minor CO2 and CH4 source, but a moderate N2O source, which are horizontally uniform.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , China , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Água
15.
Huan Jing Ke Xue ; 43(4): 2151-2162, 2022 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-35393839

RESUMO

In recent years, carbon emission research has been receiving increasing attention. China has put forward the strategic goal of achieving a carbon emission peak by 2030. Hence this research is very important for the measurement of greenhouse gas emissions in China. CO2 and CH4 fluxes from a paddy field in the middle-lower Yangtze Plain in China were analyzed based on the eddy covariance technique. The CO2 flux showed an "U" curve during the observation period, with an average flux of -3.33 µmol·(m2·s)-1, which was a sink. Negative values appeared at the tillering stage, and the minimum was shown at the heading period. The CH4 flux trend was roughly opposite to the that of the CO2 flux, which first increased and then decreased. It raised rapidly during the tillering and jointing stages and then dropped rapidly from the peak to the trough during the booting stage, and only a slight increase was found in the blooming stage. The maximum flux[0.40 µmol·(m2·s)-1] appeared at the beginning of the booting stage and the end of the jointing stage, and the average flux was 0.11 µmol·(m2·s)-1. The CO2 flux was positive at night and negative during the day. It decreased from 07:00 and reached a minimum around 13:00 at -16.01 µmol·(m2·s)-1. The CH4 flux was low at night and high during the daytime. It increased at 06:00 and reached a peak around 14:00, at approximately 0.16 µmol·(m2·s)-1. An exponential correlation was found between air temperature and CH4 flux. The vapor pressure deficit showed a linear correlation with CH4 flux. The response of environmental factors on CO2 fluxes and CH4 fluxes on a diurnal scale was greater than that on a seasonal scale, and the daytime response was greater than that at night. CH4 flux decreased significantly with the increase in CO2 flux on the diurnal scale, but the correlation was not obvious on the seasonal scale. The increased CH4 flux slowed down after fertilizing.


Assuntos
Gases de Efeito Estufa , Carbono , Dióxido de Carbono/análise , China , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Estações do Ano
16.
Sci Total Environ ; 829: 154610, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307438

RESUMO

The CO2 and CH4 fluxes across the water-air interface were determined in two groups of swimming crab (Portunus trituberculatus)-ridgetail white prawn (Exopalaemon carinicauda) polyculture ponds. One group of ponds with sediment improver application were referred to as SAPs, and the other group receiving no sediment improver were as NSPs. During the farming season, both the SAPs and NSPs acted as CO2 sinks and CH4 sources. The cumulative CO2-C fluxes from the SAPs and NSPs were -26.78 and -23.49 g m-2, respectively, and the cumulative CH4-C emissions from the SAPs and NSPs were 0.24 and 0.28 g m-2, respectively. CO2 fluxes were significantly related to net primary production and water pH, and CH4 fluxes were mainly regulated by water temperature during the farming season. The application of the oxidation-based sediment improver had a positive effect on reducing the CH4 emissions across the water-air interface but had no effect on CO2 fluxes. The sediment improver reduced the organic matter contents and improved the sediment pH and redox potential, which may have facilitated a decrease in CH4 production in the sediment. The CO2 produced through the oxidation of organic material in the sediment may have been absorbed by strong photosynthesis, resulting in a nonsignificant difference in CO2 fluxes between the SAPs and NSPs. The results indicated that the application of sediment improvers in coastal polyculture ponds can reduce carbon emissions, especially CH4 emissions, during the farming period and could help mitigate global warming with regard to the sustained-flux global warming potential (SGWP) and sustained-flux global cooling potential (SGCP) models over a 20-year time horizon. Future studies on the CO2 and CH4 production rates of the sediment and the related microbial community could improve our understanding of the effect mechanism of the application of sediment improvers on CO2 and CH4 emissions from mariculture ponds.


Assuntos
Braquiúros , Metano , Animais , Aquicultura , Dióxido de Carbono , Lagoas , Água
17.
Front Microbiol ; 13: 830019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283824

RESUMO

Wetlands are the largest natural source of terrestrial CH4 emissions. Afforestation can enhance soil CH4 oxidation and decrease methanogenesis, yet the driving mechanisms leading to these effects remain unclear. We analyzed the structures of communities of methanogenic and methanotrophic microbes, quantification of mcrA and pmoA genes, the soil microbial metagenome, soil properties and CH4 fluxes in afforested and non-afforested areas in the marshland of the Yangtze River. Compared to the non-afforested land use types, net CH4 emission decreased from bare land, natural vegetation and 5-year forest plantation and transitioned to net CH4 sinks in the 10- and 20-year forest plantations. Both abundances of mcrA and pmoA genes decreased significantly with increasing plantation age. By combining random forest analysis and structural equation modeling, our results provide evidence for an important role of the abundance of functional genes related to methane production in explaining the net CH4 flux in this ecosystem. The structures of methanogenic and methanotrophic microbial communities were of lower importance as explanatory factors than functional genes in terms of in situ CH4 flux. We also found a substantial interaction between functional genes and soil properties in the control of CH4 flux, particularly soil particle size. Our study provides empirical evidence that microbial community function has more explanatory power than taxonomic microbial community structure with respect to in situ CH4 fluxes. This suggests that focusing on gene abundances obtained, e.g., through metagenomics or quantitative/digital PCR could be more effective than community profiling in predicting CH4 fluxes, and such data should be considered for ecosystem modeling.

18.
Front Plant Sci ; 13: 1040303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714708

RESUMO

Although an important greenhouse gas, methane flux in hilly forest ecosystems remains unclear. By using closed-path eddy covariance systems, methane flux was measured continuously from 2017 to 2019 in a mixed plantation in the Xiaolangdi area of the Yellow River in North China. The methane flux footprint and its diurnal and monthly variations were analysed, and its characteristics on rainy days are discussed. The results showed that: (a) the observation data were reliable with good spatial representation (b) The methane flux in the mixed plantation ecosystem had obvious diurnal and seasonal variations: the monthly average diurnal variation of the methane flux had a single-peak; the methane flux value was source in the daytime and sink at night. The daily mean maximum value of methane flux in growing season was lower than that in non-growing season with the maximum value appearing in March, and the minimum value in October. (c) The forest is an atmospheric CH4 source with the annual emission in 2017 of (3.31 g C·m-2·year -1) >2019 (2.94 g C·m-2·year-1) >2018 (2.81 g C·m-2·year -1), and the main influencing factor was precipitation. Rainfall affected CH4 flux with a lag period of approximately three days. Rainfall also changed the balance of CH4 flux between sink or source according to precipitation intensity and frequency.

19.
Front Microbiol ; 13: 1076610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687630

RESUMO

Wetlands are natural sources of methane (CH4) emissions, providing the largest contribution to the atmospheric CH4 pool. Changes in the ecohydrological environment of coastal salt marshes, especially the surface inundation level, cause instability in the CH4 emission levels of coastal ecosystems. Although soil methane-associated microorganisms play key roles in both CH4 generation and metabolism, how other microorganisms regulate methane emission and their responses to inundation has not been investigated. Here, we studied the responses of prokaryotic, fungal and cercozoan communities following 5 years of inundation treatments in a wetland experimental site, and molecular ecological networks analysis (MENs) was constructed to characterize the interdomain relationship. The result showed that the degree of inundation significantly altered the CH4 emissions, and the abundance of the pmoA gene for methanotrophs shifted more significantly than the mcrA gene for methanogens, and they both showed significant positive correlations to methane flux. Additionally, we found inundation significantly altered the diversity of the prokaryotic and fungal communities, as well as the composition of key species in interactions within prokaryotic, fungal, and cercozoan communities. Mantel tests indicated that the structure of the three communities showed significant correlations to methane emissions (p < 0.05), suggesting that all three microbial communities directly or indirectly contributed to the methane emissions of this ecosystem. Correspondingly, the interdomain networks among microbial communities revealed that methane-associated prokaryotic and cercozoan OTUs were all keystone taxa. Methane-associated OTUs were more likely to interact in pairs and correlated negatively with the fungal and cercozoan communities. In addition, the modules significantly positively correlated with methane flux were affected by environmental stress (i.e., pH) and soil nutrients (i.e., total nitrogen, total phosphorus and organic matter), suggesting that these factors tend to positively regulate methane flux by regulating microbial relationships under inundation. Our findings demonstrated that the inundation altered microbial communities in coastal wetlands, and the fungal and cercozoan communities played vital roles in regulating methane emission through microbial interactions with the methane-associated community.

20.
Environ Sci Pollut Res Int ; 29(11): 16138-16151, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34647205

RESUMO

Nitrite-dependent anaerobic methane oxidation (N-DAMO) is an important biological process that combines microbial nitrogen and carbon cycling and is mainly carried out by nitrite-dependent anaerobic methane-oxidizing bacteria. The discovery of this microbial process has changed the conventional view of methane oxidation and nitrogen loss. In this study, the abundance, diversity, and community structure of N-DAMO bacteria were investigated based on high-throughput sequencing and fluorescence quantitative PCR measurements. We examined environmental factors driving the variations of CH4 fluxes and N-DAMO bacterial using correlation analysis and redundancy analysis. We found low CH4 fluxes and abundant N-DAMO bacteria in the riparian zone. After decomposing the effects of single variables and exploring them, NO3- was the only significant factor that significantly correlated with the abundance and richness of the N-DAMO community and gas fluxes (p < 0.05). Under the influence of three different land use types, the increase in NO3- (grassland vs. woodland and sparse woods, + 132.81% and + 106.25%) caused structural changes in the composition of the N-DAMO bacterial community, increasing its abundance (- 9.58% and + 21.19%), thus promoting the oxidation of CH4 and reduced CH4 emissions (+ 4.78% and + 35.63%) from the riparian zone. Appropriate NO3- input helps maintain the existing low methane emission fluxes in the riparian zone of the reservoir.


Assuntos
Methylococcaceae , Nitritos , Anaerobiose , Bactérias , Desnitrificação , Metano , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA