Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
2.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984903

RESUMO

Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.

3.
Int J Nanomedicine ; 17: 5027-5046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303804

RESUMO

Background: Ulcerative colitis (UC) is one of the intractable diseases recognized by the World Health Organization, and paeonol has been proven to have therapeutic effects. However, the low solubility of paeonol limits its clinical application. To prepare and optimize paeonol liposome, study its absorption mechanism and the anti-inflammatory activity in vitro and in vivo, in order to provide experimental basis for the further development of paeonol into an anti-inflammatory drug in the future. Methods: Paeonol loaded liposomes were prepared and optimized by thin film dispersion-ultrasonic method. The absorption mechanism of paeonol-loaded liposomes was studied by pharmacokinetics, in situ single-pass intestinal perfusion and Caco-2 cell monolayer model, the anti-inflammatory activity was studied in a mouse ulcerative model. Results: Box-Behnken response surface methodology permits to screen the best formulations. The structural and morphological characterization showed that paeonol was entrapped inside the bilayer in liposomes. Pharmacokinetic studies found that the AUC0-t of Pae-Lips was 2.78 times than that of paeonol suspension, indicating that Pae-Lips significantly improved the absorption of paeonol. In situ single intestinal perfusion and Caco-2 monolayer cell model results showed that paeonol was passively transported and absorbed, and was the substrate of P-gp, MRP2 and BCRP, and the Papp value of Pae-Lips was significantly higher than that of paeonol. In vitro and in vivo anti-inflammatory experiments showed that compared with paeonol, Pae-Lips exhibited excellent anti-inflammatory activity. Conclusion: In this study, Pae-Lips were successfully prepared to improve the oral absorption of paeonol. Absorption may involve passive diffusion and efflux transporters. Moreover, Pae-Lips have excellent anti-inflammatory activity in vitro and in vivo, which preliminarily clarifies the feasibility of further development of Pae-Lips into oral anti-inflammatory drugs.


Assuntos
Lipossomos , Proteínas de Neoplasias , Humanos , Camundongos , Animais , Lipossomos/química , Células CACO-2 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Modelos Animais de Doenças
4.
Food Chem Toxicol ; 166: 113204, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679974

RESUMO

The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 µg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.


Assuntos
Celulose , Nanoestruturas , Células CACO-2 , Celulose/química , Celulose/toxicidade , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade , Permeabilidade , Junções Íntimas
5.
J Food Biochem ; 46(10): e14270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35702955

RESUMO

The effective components of mulberry leaf polyphenols (MLPs) should be absorbed and transported by the intestinal cells before regulating lipid metabolism. The Caco-2 intestinal epithelial cell and 3 T3-L1 adipocytes were coupled to screen the effective components of MLPs that are being absorbed and transported by intestinal cells. The regulation and molecular mechanism by which the effective components affect adipogenesis were analyzed in this study. Among the 12 main components identified, five main compounds were well absorbed with Papp in the order of benzoic acid > chlorogenic acid > astragaloside > hyperoside > rutin. Chlorogenic acid and benzoic acid were mainly absorbed through passive diffusion, while rutin, astragaloside, and hyperoside were mainly by active transport, of which chlorogenic and rutin absorption were mediated by the efflux protein, P-glycoprotein (P-pg). Based on the transport volume of 2 mg/ml MLPs within 2 h, 25% of the maximum transported MLPs (TMLPs) was a safe concentration for 3 T3-L1 preadipocytes. Except for astragaloside, the other four components showed a significant inhibitory effect on lipid droplets, TG and TC, and chlorogenic acid and benzoic acid had the strongest effect. Additionally, we observed a synergistic effect as TMLPs were the most effective. We hypothesized that TMLPs, chlorogenic acid and benzoic acid suppressed adipogenesis and regulated lipid metabolism by inhibiting PPAR-γ, C/EBP-α, and FAS mRNA while promoting ADIPO and Leptin mRNA expression. PRACTICAL APPLICATIONS: The absorption and adipogenesis inhibition effect of mulberry leaf phenolics were evaluated in this study. The results provided guideline for the development of functional foods in regulating lipid metabolism.


Assuntos
Adipogenia , Morus , Células 3T3-L1 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Animais , Ácido Benzoico/farmacologia , Células CACO-2 , Ácido Clorogênico/farmacologia , Humanos , Leptina/genética , Leptina/metabolismo , Leptina/farmacologia , Camundongos , Morus/genética , Morus/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Folhas de Planta/metabolismo , Polifenóis/farmacologia , RNA Mensageiro/genética , Rutina/farmacologia , Transdução de Sinais
6.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408631

RESUMO

Perindopril arginine (PA) as an angiotensin-converting enzyme (ACE) inhibitor is widely used in cardiovascular diseases, especially in systemic hypertension and heart failure. Although the pharmacokinetics of PA are well documented, there is no available detailed data on its permeation in in vitro conditions. The present study aimed to assess the transport of PA across both biological membranes and artificial biomimetic ones. For the determination of PA transport, the Caco-2 cell line was selected as a reliable in vitro model of gastrointestinal biological barriers. Additionally, a novel 96-well plate with phospholipid membrane PermeaPad was used to evaluate the transport of PA by passive diffusion. We confirmed that PA is relatively poorly permeable across the Caco-2 monolayer. The permeability results obtained from the non-cell-based model demonstrated higher transport of PA as compared to that of Caco-2. Thus, PA transport across the biological membranes might be suggested to be regulated by the membrane transporters.


Assuntos
Perindopril , Fosfolipídeos , Arginina , Transporte Biológico , Biomimética , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Absorção Intestinal , Permeabilidade
7.
J Pharm Sci ; 111(1): 214-224, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838780

RESUMO

The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.


Assuntos
Ácidos e Sais Biliares , Trato Gastrointestinal , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Absorção Intestinal , Permeabilidade
8.
Food Chem ; 360: 130152, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34034052

RESUMO

Protein-based Pickering emulsions have received considerable attention as nutraceutical vehicles. However, the oral bioavailability of nutraceuticals encapsulated in Pickering emulsions was not well established. In this work, a simulated gastrointestinal tract/Caco-2 cell culture model was applied to investigate the oral bioavailability of quercetin encapsulated in zein-based Pickering emulsions with quercetin in zein particles as the control. Pickering emulsions with shell (ZCP-QE) and core quercetin (ZCPE-Q) were constructed, and quercetin bioaccessibility, cell uptake and secretion, and the overall bioavailability were evaluated and compared. The overall oral bioavailability of quercetin was increased from 2.71% (bulk oil) to 38.18% (ZCPs-Q) and 18.97% (ZCPE-Q), particularly reached 41.22% for ZCP-QE. This work took new insights into the contributions of bioaccessibility and absorption (cell uptake plus secretion) to the overall oral bioavailability of quercetin. A schematic representation is proposed to relate the types of colloidal nanostructures in the digesta to the uptake, cell absorption, and overall oral bioavailability of quercetin. This study provided an attractive basis for identifying effective strategies to improve the oral bioavailability of hydrophobic nutraceuticals.


Assuntos
Emulsões/química , Quercetina/metabolismo , Zeína/química , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Digestão , Humanos , Microscopia Confocal , Tamanho da Partícula , Quercetina/química , Quercetina/farmacologia
9.
Pharmaceutics ; 13(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800701

RESUMO

Oligonucleotides (OND) represent a promising therapeutic approach. However, their instability and low intestinal permeability hamper oral bioavailability. Well-established for oral delivery, self-emulsifying drug delivery systems (SEDDS) can overcome the weakness of other delivery systems such as long-term instability of nanoparticles or complicated formulation processes. Therefore, the present study aims to prepare SEDDS for delivery of a nonspecific fluorescently labeled OND across the intestinal Caco-2 monolayer. The hydrophobic ion pairing of an OND and a cationic lipid served as an effective hydrophobization method using either dimethyldioctadecylammonium bromide (DDAB) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). This strategy allowed a successful loading of OND-cationic lipid complexes into both negatively charged and neutral SEDDS. Subjecting both complex-loaded SEDDS to a nuclease, the negatively charged SEDDS protected about 16% of the complexed OND in contrast to 58% protected by its neutral counterpart. Furthermore, both SEDDS containing permeation-enhancing excipients facilitated delivery of OND across the intestinal Caco-2 cell monolayer. The negatively charged SEDDS showed a more stable permeability profile over 120 min, with a permeability of about 2 × 10-7 cm/s, unlike neutral SEDDS, which displayed an increasing permeability reaching up to 7 × 10-7 cm/s. In conclusion, these novel SEDDS-based formulations provide a promising tool for OND protection and delivery across the Caco-2 cell monolayer.

10.
Carbohydr Polym ; 263: 117984, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858577

RESUMO

Cellulose nanocrystals (CNC) as a novel ingredient in foods and pharmaceuticals still lacks the safety and functionality information. We aimed to assess the absorption of CNC in small intestine and the effect on cell viability. In the second part, the impact of CNC on substance permeation through mucus layer, including the potential functionality in improving high blood cholesterol, was tested. No noticeable amount of CNC was found to penetrate through differentiated Caco-2 monolayer and in vitro mucus layer, and CNC had low toxicity on Caco-2 cell viability up to 10 mg/mL. CNC at 2 % (w/w) may affect the permeability of the mucus layer and larger molecules are more easily influenced. CNC may also alleviate hypercholesteremia by increasing viscosity of digesta, adsorbing cholesterol, and decreasing bile acids permeation. The results suggest CNC may not penetrate the small intestinal lining and may be used as a functional supplement.


Assuntos
Celulose/química , Intestino Delgado/metabolismo , Muco/metabolismo , Nanopartículas/química , Permeabilidade , Ácidos e Sais Biliares/metabolismo , Células CACO-2 , Sobrevivência Celular , Colesterol/metabolismo , Humanos , Técnicas In Vitro
11.
J Agric Food Chem ; 69(9): 2711-2718, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629836

RESUMO

Here, we characterize the activities of two depeptidyl peptidase-IV (DPP-IV) inhibitory peptides, VLATSGPG and LDKVFER, using the Caco-2 monolayer model for the intestine. VLATSGPG and LDKVFR inhibited the DPP-IV in the cells via a mixed-type inhibition mode, with in situ IC50 values of 207.3 and 148.5 µM, respectively. Furthermore, VLATSGPG and LDKVFR were transported intact across the cells, with Papp values of 2.41 ± 0.16 and 4.23 ± 0.29 × 10-7 cm/s, respectively. Fragmented peptides were identified in the basolateral side of the membrane. Two of these, GPG and VLA, exhibited high inhibitory activities of 83.6 ± 3.3 and 58.5 ± 2.5%, respectively, at 100 µM concentration. Although 3 mM VLATSGPG and LDKVFR were transported across the epithelium in a concentration-dependent manner, their transport did not damage the tight junction proteins, ZO-1 and occludin. This study demonstrates that the two peptides potentially regulate DPP-IV activity in the intestine.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Células CACO-2 , Técnicas de Cultura de Células , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV/farmacologia , Humanos , Intestinos , Peptídeo Hidrolases , Peptídeos
12.
Foods ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317079

RESUMO

BACKGROUND: olive pomace extract (OPE) is a rich source of health promoting polyphenols (hydroxytyrosol (HTS) and tyrosol (TS)) and can be used as a nutraceutical ingredient of dietary supplements and functional foods. Its adequate bioavailability is a prerequisite for excreting biological activity and can be significantly and specifically affected by different food matrices. METHODS: in order to investigate food effects on polyphenol bioaccessibility, OPE was co-digested with different foods according to internationally harmonized in vitro digestibility method. Impact of particular nutrients on HTS and TS permeability was assessed on Caco-2 cell monolayer. RESULTS: HTS and TS bioaccessibility and transepithelial permeability can be significantly affected by foods (nutrients), especially by casein and certain types of dietary fiber. Those effects are polyphenol-and nutrient-specific and are achieved either through complexation in gastrointestinal lumen and/or through direct effects of nutrients on intestinal monolayer. CONCLUSIONS: obtained results emphasize the significance and complexity of polyphenol interactions within the food matrix and the necessity of individual investigational approaches with respect to particular food/nutrient and interacting phenolic compounds.

13.
Pharmaceutics ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374997

RESUMO

Peptide oral administration is a hard goal to reach, especially if the brain is the target site. The purpose of the present study was to set up a vehicle apt to promote oral absorption of the neuropeptide dalargin (DAL), allowing it to cross the intestinal mucosal barrier, resist enzymatic degradation, and transport drugs to the brain after crossing the blood-brain barrier. Therefore, a chitosan quaternary ammonium derivative was synthesized and conjugated with methyl-ß-cyclodextrin to prepare DAL-medicated nanoparticles (DAL-NP). DAL-NP particle size was 227.7 nm, zeta potential +8.60 mV, encapsulation efficiency 89%. DAL-NP protected DAL from degradation by chymotrypsin or pancreatin and tripled DAL degradation time compared to non-encapsulated DAL. Use of DAL-NP was safe for either Caco-2 or bEnd.3 cells, with the latter selected as a blood-brain barrier model. DAL-NP could also cross either the Caco-2 or bEnd.3 monolayer by the transepithelial route. The results suggest a potential DAL-NP ability to transport to the brain a DAL dose fraction administered orally, although in vivo experiments will be needed to confirm the present data obtained in vitro.

14.
NanoImpact ; 172020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32864507

RESUMO

The use of engineered nanomaterials (ENMs) in foods and consumer products is rising, increasing the potential for unintentional ingestion. While the cytotoxicity of many ENMs has been investigated, less attention has been given to adverse impact on the intestinal barrier integrity. Chronical disruption of gastrointestinal integrity can have far reaching health implications. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity were investigated for 20 metal, metal oxide, and metal sulfide ENMs. Caco-2 cells were exposed to 50 µg/mL ENMs for 24 hours. ENM formulations were characterized at 0 and 24 hours, and In Vitro Sedimentation, Diffusion and Dosimetry Modeling was applied to calculate the effective dose of exposure during 24 hours. The apparent permeability coefficient (Papp) was determined for fluorescent labeled dextran (3,000 Da) and tight junction integrity was evaluated by immunofluorescence microscopy. Cytotoxicity was investigated by determining lactate dehydrogenase release (LDH) and cell metabolic activity (tetrazolium based MTS) assays. Four ENMs led to significantly increased Papp, (15.8% w/w% Ag-SiO2 nanoparticle (NP), 60 nm CdS NP, 100 nm V2O5 flakes, and 50 nm ZnO NP), while one ENM (20 nm MgO NP) decreased Papp. With the exception of CdS NP, significantly increased Papp was not connected with cell cytotoxicity. The calculated effective dose concentration was not correlated with increased Papp. Our results illustrate that while many metal, metal oxide, and metal sulfide ENMs do not adversely affect monolayer integrity or induce cytotoxicity in differentiated Caco-2 cells, a subset of ENMs may compromise the intestinal integrity. This study demonstrated the use of differentiated Caco-2 monolayer and Papp as an endpoint to identify and prioritize ENMs that should be investigated further. The interaction between ENMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications.

15.
Front Med (Lausanne) ; 7: 510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984383

RESUMO

Systemic administration of melatonin exerts tissue protective effects in the context of hemorrhagic shock. Intravenous application of melatonin prior to hemorrhage improves gastric microcirculatory perfusion and maintains intestinal barrier function in dogs. The aim of the present study was to analyze the effects of a topical mucosal melatonin application on gastric microcirculation during hemorrhagic shock in vivo and on mucosal barrier function in vitro. In a randomized cross-over study, six anesthetized female foxhounds received 3.3 mg melatonin or the vehicle as a bolus to the gastric and oral mucosa during physiological and hemorrhagic (-20% blood volume) conditions. Microcirculation was analyzed with reflectance spectrometry and laser doppler flowmetry. Systemic hemodynamic variables were measured with transpulmonary thermodilution. For analysis of intestinal mucosal barrier function in vitro Caco-2 monolayers were used. The transepithelial electrical resistance (TEER) and the passage of Lucifer Yellow (LY) from the apical to the basolateral compartment of Transwell chambers were measured. Potential barrier protective effects of melatonin against oxidative stress were investigated in the presence of the oxidant H2O2. During physiologic conditions topical application of melatonin had no effect on gastric and oral microcirculation in vivo. During hemorrhagic shock, gastric microcirculatory oxygenation (µHbO2) was decreased from 81 ± 8% to 50 ± 15%. Topical treatment with melatonin led to a significant increase in µHbO2 to 60 ± 13%. Topical melatonin treatment had no effect on gastric microcirculatory perfusion, oral microcirculation or systemic hemodynamics. Incubation of H2O2 stressed Caco-2 monolayers with melatonin did neither influence transepithelial electrical resistance nor LY translocation. Topical treatment of the gastric mucosa with melatonin attenuates the shock induced decrease in microcirculatory oxygenation. As no effects on local microcirculatory and systemic perfusion were recorded, the improved µHbO2 is most likely caused by a modulation of local oxygen consumption. In vitro melatonin treatment did not improve intestinal barrier integrity in the context of oxidative stress. These results extend the current knowledge on melatonin's protective effects during hemorrhage in vivo. Topical application of melatonin exerts differential effects on local microcirculation compared to systemic pretreatment and might be suitable as an adjunct for resuscitation of hemorrhagic shock.

16.
Food Chem ; 330: 127184, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531635

RESUMO

Heat treatment is a commonly applied unit operation in the processing of ß-lactoglobulin containing products. This does, however, influence its structure and thereby impacts its activity and digestibility. We describe how various heat-treatments of ß-lactoglobulin change the digestibility using a modified version of the current consensus INFOGEST protocol. Additionally, protein was investigated for its translocation over the intestinal epithelial barrier, which would bring them in contact with immune cells. The extent of gastric digestibility was higher when the protein structure was more modified, while the influence of glycation with lactose was limited. Translocation studies of protein across Caco-2 cell monolayers showed a lower translocation rate of protein heated in solution compared to the others. Our study indicates that structural modifications after different heat-treatments of ß-lactoglobulin increase in particular gastric digestibility and the translocation efficiency across intestinal epithelial cells.


Assuntos
Mucosa Gástrica , Lactoglobulinas/metabolismo , Células CACO-2 , Digestão , Glicosilação , Temperatura Alta , Humanos , Lactoglobulinas/química , Lactose/metabolismo , Estômago
17.
Chemosphere ; 256: 127204, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470746

RESUMO

The digestive tract is an important target organ for microplastics (MPs). However, little is known about the effects of digestive treatment on the intestinal toxicity of MPs. In this study, an in vitro digestive process was applied to transform 100 nm and 5 µm polystyrene microplastics (PS-MPs). Intestinal toxicities of original PS-MPs and transformed PS-MPs (t-PS-MPs) were determined using an in vitro Caco-2 monolayer model. Results showed that the digestive process did not alter the chemical constitution of PS-MPs, but formed a corona on the surface of PS-MPs. The 100 nm PS-MPs showed higher intestinal toxicity than 5 µm PS-MPs. Digestive treatment relieved cytotoxicity and transport function disorder of the Caco-2 monolayer induced by the original PS-MPs. Moreover, the combined toxicities of PS-MPs and arsenic were also decreased by digestive treatment. However, the in vitro digestive process increased the proinflammatory effects of PS-MPs. The formation of a corona on the PS-MP surface, which lead to a change in size, Zeta potential, and adsorbed compounds, might induce the above influence of digestive treatment. Our study suggests that direct cytotoxicity assays of PS-MPs might misestimate their intestinal effects, which provide new lights to the toxicity evaluation of PS-MPs by oral exposure.


Assuntos
Digestão/fisiologia , Intestinos/fisiologia , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Células CACO-2 , Linhagem Celular Tumoral , Humanos
18.
Antioxidants (Basel) ; 9(5)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414055

RESUMO

Palmitic acid (PA), a long-chain saturated fatty acid, might activate innate immune cells. PA plays a role in chronic liver disease, diabetes and Crohn's disease, all of which are associated with impaired intestinal permeability. We investigated the effect of PA, at physiological postprandial intestinal concentrations, on gut epithelium as compared to lipopolysaccharide (LPS) and ethanol, using an in vitro gut model, the human intestinal epithelial cell line Caco-2 grown on transwell inserts. Cytotoxicity and oxidative stress were evaluated; epithelial barrier integrity was investigated by measuring the paracellular flux of fluorescein, and through RT-qPCR and immunofluorescence of tight junction (TJ) and adherens junction (AJ) mRNAs and proteins, respectively. In PA-exposed Caco-2 monolayers, cytotoxicity and oxidative stress were not detected. A significant increase in fluorescein flux was observed in PA-treated monolayers, after 90 min and up to 360 min, whereas with LPS and ethanol, this was only observed at later time-points. Gene expression and immunofluorescence analysis showed TJ and AJ alterations only in PA-exposed monolayers. In conclusion, PA affected intestinal permeability without inducing cytotoxicity or oxidative stress. This effect seemed to be faster and stronger than those with LPS and ethanol. Thus, we hypothesized that PA, besides having an immunomodulatory effect, might play a role in inflammatory and functional intestinal disorders in which the intestinal permeability is altered.

19.
Drug Dev Ind Pharm ; 45(9): 1444-1450, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31170849

RESUMO

The aim of this study was to improve the solubility, oral bioavailability, and anti-gastroesophageal reflux activity of curcumin (CM) by preparing two CM-loaded, novel, binary mixed micelles (CM-M). The two CM-M were prepared by ethanol thin-film hydration method. One (CM-T) was prepared using D-alpha-tocopheryl polyethylene glycol 1000 succinate and Solutol®HS15, and the other (CM-F) was prepared using Pluronic®F127 and Solutol®HS15. The entrapment efficiency and drug loading of CM-T were 83.61 ± 0.54% and 2.20 ± 0.65%, respectively, which were lower than those of CM-F (88.66 ± 0.12% and 1.47 ± 0.26%, respectively). TEM results demonstrated that CM-T and CM-F were homogeneous and spherical. The permeability of CM delivered via CM-T and CM-F was enhanced across a Caco-2 cell monolayer, and CM-T and CM-F showed a 5.24- and 4.76-fold increase in relative oral bioavailability, respectively compared with free CM. In addition, the in vivo anti-gastroesophageal reflux study showed that CM-T and CM-F achieved higher anti-gastroesophageal reflux efficacy compared with free CM. Collectively, these findings were indicative of an oral micelle formulation of CM with increased solubility, oral bioavailability, and anti-gastroesophageal reflux activity.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Refluxo Gastroesofágico/tratamento farmacológico , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Curcumina/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Humanos , Absorção Intestinal , Mucosa Intestinal , Masculino , Camundongos , Micelas , Modelos Animais , Permeabilidade , Poloxâmero/química , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Ácidos Esteáricos/química , Vitamina E/química
20.
J Pharm Pharmacol ; 71(6): 898-909, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30784084

RESUMO

OBJECTIVES: The aim of this research was to investigate the intestinal absorption characteristics and mechanisms of spinosin (SPI), and a new dosage form was prepared to increase the intestinal absorption of SPI. METHODS: In this study, the intestinal absorption characteristics and mechanisms of SPI were first investigated using in situ absorption model and Caco-2 monolayer model. Subsequently, the phospholipid complex (PLC) loaded with SPI was prepared followed by a self-microemulsifying drug delivery system (SMEDDS) technique for developing a more efficient formulation. KEY FINDINGS: The results showed that the absorption rate constant (0.02 h-1 ) and absorption percentage (10%) of SPI were small. Paracellular and active transport pathways mainly mediated the intestinal absorption of SPI. Moreover, SPI-PLC-SMEDDS showed a nanoscale particle size and excellent dispersibility in vitro. The cellular uptake and transportation properties of SPI-PLC-SMEDDS in the Caco-2 cell model were improved significantly. Besides, a statistically dramatically higher oral bioavailability (almost fivefold) was observed following the oral administration of SPI-PLC-SMEDDS than free SPI on the basis of pharmacokinetic experiment results. Furthermore, the SPI-PLC-SMEDDS exhibited certain immunization. CONCLUSIONS: SPI-PLC-SMEDDS could be a promising oral drug delivery system to improve the absorption of SPI.


Assuntos
Sistemas de Liberação de Medicamentos , Flavonoides/administração & dosagem , Absorção Intestinal , Fosfolipídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Emulsões , Flavonoides/farmacocinética , Humanos , Tamanho da Partícula , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA