Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.292
Filtrar
1.
Front Oncol ; 14: 1424824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091919

RESUMO

The tumor microenvironment is increasingly acknowledged as a critical contributor to cancer progression, mediating genetic and epigenetic alterations. Beyond diverse cellular interactions from the microenvironment, physicochemical factors such as tumor acidosis also significantly affect cancer dynamics. Recent research has highlighted that tumor acidosis facilitates invasion, immune escape, metastasis, and resistance to therapies. Thus, noninvasive measurement of tumor acidity and the development of targeted interventions represent promising strategies in oncology. Techniques like contrast-enhanced ultrasound (CEUS) can effectively assess blood perfusion, while ultrasound-stimulated microbubble cavitation (USMC) has proven to enhance tumor blood perfusion. We therefore aimed to determine whether CEUS assesses tumor acidity and whether USMC treatment can modulate tumor acidity. Firstly, we tracked CEUS perfusion parameters in MCF7 tumor models and compared them with in vivo tumor pH recorded by pH microsensors. We found that the peak intensity and area under curve of tumor contrast-enhanced ultrasound correlated well with tumor pH. We further conducted USMC treatment on MCF7 tumor-bearing mice, tracked changes of tumor blood perfusion and tumor pH in different perfusion regions before and after the USMC treatment to assess its impact on tumor acidity and optimize therapeutic ultrasound pressure. We discovered that USMC with 1.0 Mpa significantly improved tumor blood perfusion and tumor pH. Furthermore, tumor vascular pathology and PGI2 assays indicated that improved tumor perfusion was mainly due to vasodilation rather than angiogenesis. More importantly, analysis of glycolysis-related metabolites and enzymes demonstrated USMC treatment can reduce tumor acidity by reducing tumor glycolysis. These findings support that CEUS may serve as a potential biomarker to assess tumor acidity and USMC is a promising therapeutic modality for reducing tumor acidosis.

2.
Biomaterials ; 312: 122709, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094521

RESUMO

Sonodynamic therapy (SDT) relies heavily on the presence of oxygen to induce cell death. Its effectiveness is thus diminished in the hypoxic regions of tumor tissue. To address this issue, the exploration of ultrasound-based synergistic treatment modalities has become a significant research focus. Here, we report an ultrasonic cavitation effect enhanced sonodynamic and 1208 nm photo-induced cancer treatment strategy based on thermoelectric/piezoelectric oxygen-defect bismuth oxychloride nanosheets (BNs) to realize the high-performance eradication of tumors. Upon ultrasonic irradiation, the local high temperature and high pressure generated by the ultrasonic cavitation effect combined with the thermoelectric and piezoelectric effects of BNs create a built-in electric field. This facilitates the separation of carriers, increasing their mobility and extending their lifetimes, thereby greatly improving the effectiveness of SDT and NIR-Ⅱ phototherapy on hypoxia. The Tween-20 modified BNs (TBNs) demonstrate ∼88.6 % elimination rate against deep-seated tumor cells under hypoxic conditions. In vivo experiments confirm the excellent antitumor efficacy of TBNs, achieving complete tumor elimination within 10 days with no recurrences. Furthermore, due to the high X-ray attenuation of Bi and excellent NIR-Ⅱ absorption, TBNs enable precise cancer diagnosis through photoacoustic (PA) imaging and computed tomography (CT).

3.
Ultrason Sonochem ; 110: 107021, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39153418

RESUMO

The challenge of cavitation erosion (CE) in flow-handling components of marine engineering has promoted the development of advanced materials due to safety incidents and economic costs. High entropy alloys (HEAs), known for high hardness and corrosion resistance, emerge as promising candidates. This paper delved into the CE characteristics of CoCrFeNiMoCu0.1 HEA when subjected to the 3.5 wt% NaCl solution, elucidating the synergistic effect of CE-corrosion. The quantitative analysis revealed that CE-corrosion synergy contributed 48.02% to total CE mass loss, primarily attributed to corrosion-induced CE damage. Meanwhile, electrochemical noise (EN) was utilized to reveal the corrosion behavior of CoCrFeNiMoCu0.1 HEA in 3.5 wt% NaCl solution combined with the morphologies observation and surface roughness. Extended CE time compromised the corrosion resistance of CoCrFeNiMoCu0.1 HEA and diminished the impact of selective phase corrosion on the surface. Eventually, the CE damage mechanism of CoCrFeNiMoCu0.1 HEA was revealed based on pertinent experimental findings. The results showed that with increased CE time, the CoCrFeNiMoCu0.1 HEA transitioned from predominantly extensive exfoliation of the initial FCC phase to further damage of the intermetallic σ and µ phases.

4.
Environ Technol ; : 1-16, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39157964

RESUMO

Water pollution caused by an abusive discharge of dye-containing wastewater leads to serious ecological risks. Conventional wastewater treatment methods have shortcomings of incomplete degradation, long-time treatment and secondary pollution. For the first time, a rotational hydrodynamic cavitation reactor (RHCR) equipped with a conical rotor has been designed to enhance the ozonation process for effective degradation of pollutants. The effects of rotational speed, discharge voltage, gas flow rate, liquid flow rate and initial pH on methylene blue (MB) degradation were deeply investigated. The optimised conditions were initial pH = 9, rotational speed = 1800 rpm, discharge voltage = 9.3 kV, gas flow rate = 60 mL/min and liquid flow rate = 80 mL/min. With the integration of ozonation and cavitation in RHCR, the MB degradation efficiency reached 95.2%, which was 15.6% higher than that of the individual ozonation method. The degradation process was proven to track the first-order kinetic model, with the reaction rate and synergy index were 0.232 min-1 and 1.78, respectively. Through the quenching experiments, it can be confirmed that the contribution proportion of hydroxyl radical during degradation was increased by 8.7% due to the enhancement of cavitation. A required energy consumption of 74.7 kWh/order/m3 and a total expense of 8.7 $/m3 were calculated. The energy consumption of the RHCR was approximately 80% lower than that of the recently reported degradation system combining ozonation and cavitation, with total expense reduced by 52%. The findings of this work provide a new water treatment method and offered theoretical references for the design of RHCR.

5.
Transl Lung Cancer Res ; 13(7): 1708-1717, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39118887

RESUMO

Background: Cavities have been reported in approximately 20% of lung cancer after anti-angiogenesis treatments. However, the effect of which on treatment outcomes remains unclear. This study sought to investigate the incidence and radiographic patterns of tumor cavitation in patients with non-small cell lung cancer (NSCLC) treated with apatinib, and its associations with patients' clinical characteristics and outcomes. Methods: A total of 300 patients with NSCLC treated with apatinib were retrospectively identified. Baseline and follow-up chest computed tomography scans were reviewed to identify tumor cavitation, and the subsequent filling-in of the cavitation. A multivariate logistic regression analysis was conducted to identify the factors associated with tumor cavitation. Survival curves were constructed using the Kaplan-Meier method and compared using the log-rank test. Results: Of the 300 patients, 51 (17.0%) developed lung cavitation after initiating apatinib therapy. The results of the multivariate analysis showed that apatinib combination therapy (vs. apatinib monotherapy, odds ratio: 0.593, 95% confidence interval: 0.412-0.854, P=0.005) was significantly associated with tumor cavitation. Patients with tumor cavitation had significantly longer progression-free survival (PFS) than those without cavitation (8.2 vs. 5.2 months, P<0.01). Of the patients, 18 had cavity filling after progression, while 13 had persistent cavities after progression. The corresponding median PFS times were 11.9 and 3.2 months in patients with filled and persistent cavities after disease progression, respectively (P<0.001). Conclusions: Tumor cavitation occurred in 17% of the NSCLC patients treated with apatinib and was associated with better PFS. Patients who had cavities filled after progression had a better prognosis than those with persistent cavities.

6.
Theranostics ; 14(11): 4519-4535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113808

RESUMO

Background : Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods : A phase 1 clinical study with mild to moderate AD patients (N = 6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aß) load in the brain were assessed through 18F-florbetapir PET. Results : BBBO was achieved in 5 out of 6 subjects with an average volume of 983 ± 626 mm3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8 ± 10.7 min. Cavitation dose significantly correlated with the BBBO volume (R 2 > 0.9, N = 4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aß42 (R 2 = 0.74), Tau (R 2 = 0.95), and P-Tau181 (R 2 = 0.86), assayed in serum-derived EVs sampled 3 days after FUS (N = 5). From PET scans, subjects showed a lower Aß load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose (R 2 > 0.9, N = 3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion : We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Microbolhas , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Idoso , Feminino , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Peptídeos beta-Amiloides/metabolismo , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Idoso de 80 Anos ou mais
7.
Int J Hyperthermia ; 41(1): 2389292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39134063

RESUMO

Background: High intensity focused ultrasound (HIFU) can destroy tissue by thermal ablation which may be accompanied by acoustic cavitation and/or tissue water boiling, but the biological and histological effects of these treatments have not been fully documented. Here, detailed histological analysis over time using well characterized HIFU exposures in in vivo rat livers is described.Methods: Exposures used invoked either (i) thermal, with acoustic cavitation and/or tissue water boiling or (ii) predominantly thermal damage. Cavitation activity was detected using both active and passive methods. Histological assessment involved hematoxylin and eosin (H&E), picrosirius red and immunohistochemical staining.Results: Distinct concentric damage regions were identified after HIFU exposures. The outermost ring showed a red H&E-stained rim that was characterized by hemorrhage. The adjacent inner band appeared white due to increased extracellular spaces. The morphology of the next zone depended on the exposure. Where there was no tissue acoustic cavitation/water boiling, this was the lesion center, in which heat-fixed cells were seen. Where acoustic cavitation/boiling occurred, a centermost zone with irregular holes up to several hundred microns across was seen. Cleaved caspase-3 and Hsp70 staining in the periphery of both types of HIFU exposures was seen within the outermost ring of hemorrhage, where an inflammatory response was also observed. By day 7, a distinct acellular region in the center of the HIFU lesions had been created.Conclusions: These results identify the morphological effects and elucidate the similarities and differences of HIFU-induced thermal lesions in the presence or absence of acoustic cavitation/tissue water boiling.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ratos , Fígado/patologia , Masculino , Ratos Sprague-Dawley
8.
Plant Cell Environ ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119783

RESUMO

Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.

9.
Ultrason Sonochem ; 109: 107011, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39121600

RESUMO

Surface-attached micro- and nanobubbles are known for their resistance to external forces. This study experimentally and theoretically investigates their response to strong ultrasonic fields. Surface-attached micro- and nanobubbles with contact radii from 2 µm to 20 µm are generated in a microchannel and exposed to ultrasound through a vibrating glass substrate. At a driving frequency over 200 kHz up to 2 MHz tested, no significant response from the micro- and nanobubbles is observed. By contrast, at 100 kHz-200 kHz, ultrasonic cavitation bubbles appear in the microchannel and migrate toward the surface micro- and nanobubbles. Then the surface micro- and nanobubbles merge with the ultrasonic cavitation bubbles, detach from the substrate, and become free gaseous nuclei susceptible to further cavitation. Notably, the removal process leaves no observable residue. Theoretical analysis suggests that the directional migration of cavitation bubbles is driven by mutual acoustic radiation forces. This work demonstrates that ultrasonic fields can effectively remove surface micro- and nanobubbles, transforming them into free gaseous cavitation nuclei.

10.
Ultrason Sonochem ; 109: 107016, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39126991

RESUMO

The interaction between cavitation bubbles and plastrons on superhydrophobic surfaces was investigated using a low-voltage discharge device and high-speed photography techniques. The plastron adhered to the superhydrophobic surface acts as a liquid-gas interface, giving the boundary the ability to repel cavitation bubbles. The direction of bubble collapse is determined by the vector synthesis of the Bjerknes repulsive force from the plastron and the Bjerknes attractive force from the rigid wall when the bubble collapses for the first time. Various collapse behaviors were observed, including bubbles moving away from the plastron, bubbles orienting towards the plastron, and bubbles splitting into sub-bubbles in opposite directions. During the subsequent evolution of the bubbles, the expansion of the plastron led to the reversal of the downward jet or reduced the impact velocity of the jet. Seven jet patterns were identified based on the evolution of the cavitation bubble. Starting from the impact velocity of the jet, three jet patterns, namely, the jet away from the plastron (JA), the funnel-shaped jet away from the plastron (JAF), and the funnel-shaped jet away from the plastron with vortex shedding (JAFV), were found to have a weaker effect on the boundary. Three criteria for the design of plastrons on superhydrophobic surfaces were established: VP>0.25Vmax, HP>0.55Rmax, DP>1.2Rmax. Passive pulsation of the plastron in response to the cavitation bubble exhibited similar behaviors across seven jet patterns except for the JAF pattern: torus-shaped, dish-shaped, and skirt-shaped. The dimensionless wall distance, volume ratio, and plastron morphology parameters were identified as significant factors influencing the interaction between cavitation bubbles and the plastron.

11.
Ultrason Sonochem ; 109: 107020, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39126990

RESUMO

The present study aims to investigate the degradation of HPMC on a laboratory scale by acoustic and hydrodynamic cavitation. The effects of temperature and the addition of an external oxidizing agent on the effectiveness of HPMC degradation were systematically investigated by SEC/MALS-RI, FTIR and 1H NMR. The results of the experiments without cavitation show that an external oxidizing agent alone reduces the weight-average molar mass at 60 °C in 30 min for 45.1 % (from 335 to 184 kg mol-1). However, the weight-average molar mass of HPMC decreased significantly more in the cavitation treatment, for 98.8 % (from 335 to 4 kg mol-1) in 30 min at optimal operating conditions of hydrodynamic cavitation (i.e. addition of external oxidant and 60 °C) with a concomitant narrowing of the molar mass distribution, as shown by the dispersity value, which decreased from 2.24 to 1.31. Compared to acoustic cavitation, hydrodynamic cavitation also proved to be more energy efficient. The FTIR spectra of the cavitated HPMC samples without the addition of H2O2 show negligible oxidation of the hydroxyl groups and the glycosidic bonds, confirming that mechanical effects predominate in HPMC degradation in these cases. In contrast, when H2O2 was added, FTIR and 1H NMR show typical signals for cellulose oxidation products, especially when the experiments were performed at 60 °C, confirming that chemical as well as mechanical effects are responsible for the extensive HPMC degradation in these cases. Since treatment methods that lead to lower molar masses and narrower molar mass distributions of the polymers are lacking or require longer treatment times (e.g. 24 h), mechanochemical treatment methods such as cavitation have great potential, as they enable faster polymer degradation (in our case 30 min) through a combination of mechanical and/or chemical degradation mechanisms.

12.
Front Cardiovasc Med ; 11: 1417005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108666

RESUMO

Objective: To characterize the gas production phenomenon in the animal model of left ventricular assist device (LVAD), and study its mechanism. Methods: An in vitro bubble precipitation experiment was conducted, and the blood samples of Parma spp. animals were divided into ordinary group and oxygen-enriched group according to whether they were oxygenated or not at the time of blood collection, and a static control group was set up respectively. Blood gases were drawn and analyzed before and after the experiment. Activate the pump, and the number of air bubbles in the loop was measured by ultrasound at different rotational speeds; CFD was applied to simulate the flow field in the blood pump, and pressure, fluid velocity vector and shear force diagrams were plotted, and a thrombus model was constructed and the flow field was simulated and plotted as a cloud diagram. Results: There was a statistical difference in the number of bubbles in the inflow and outflow tubes of the blood pump (P values of 0.04 and 0.023, respectively), and the number of bubbles in the outflow tubes of both groups was significantly higher than the number of bubbles in the inflow tubes. The number of bubbles in the tubes of both the oxygen-enriched and normal groups was significantly higher than that in the inflow group. In both the normal and oxygen-enriched groups, more gas was produced at higher speeds than at lower speeds. Blood gas analysis showed that the reduced gas composition in the blood was mainly oxygen. Flow field simulation results: the high rotation speed group had lower central pressure and greater scalar shear. The thrombus simulation group was more prone to turbulence, sudden pressure changes, and greater shear than the normal group. Conclusion: Blood gas production is associated with higher partial pressures of blood oxygen, higher rotation speed, and intrapump thrombosis, and the mechanism of pump gas production is degassing of dissolved gases rather than cavitation of water, and the gas released is most likely to have oxygen. The degassing phenomenon is an warning factor for pump thrombosis.

13.
Ultrason Sonochem ; 109: 107007, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111248

RESUMO

Cavitation generated during injector jetting can significantly affect fuel atomization. Laser-induced cavitation bubble is an important phenomenon in laser induced plasma ignition technology. Limited by the difficulties in experimental measurements, numerical simulations have become an important tool in the study of laser-induced cavitation bubble, but most previous numerical models used to study the dynamics of laser-induced cavitation bubble usually ignore the effect of chemical reactions. In this study, the finite volume method is used to solve the compressible two-dimensional reynolds averaged Navier-Stokes equation by considering the heat and mass transfer as well as the chemical reactions within the cavitation bubble. The effects of overall reaction and elementary reactions on the cavitation bubble are evaluated, respectively. It is found that by additionally considering chemical reactions within the numerical model, lower maximum temperatures and higher maximum pressures are predicted within the bubble. And the generated non-condensable gases produced by the chemical reactions enhance the subsequent expansion process of the cavitation bubble. Besides, the effect of the one-sided wall boundary condition on cavitation bubble is compared with the infinite boundary condition. Influenced by the wall boundary, the cavitation bubble forms a localized high pressure on the side of the bubble away from the wall during the collapse process, which causes the bubble to be compressed into a "crescent" shape. The maximum pressure and temperature inside the bubble are lower due to localized losses caused by the wall.

14.
Exp Biol Med (Maywood) ; 249: 10096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170033

RESUMO

The current study explores the potential of ultrasound-assisted laser therapy (USaLT) to selectively destroy melanoma cells. The technology was tested on an ex vivo melanoma model, which was established by growing melanoma cells in chicken breast tissue. Ultrasound-only and laser-only treatments were used as control groups. USaLT was able to effectively destroy melanoma cells and selectively remove 66.41% of melanoma cells in the ex vivo tumor model when an ultrasound peak negative pressure of 2 MPa was concurrently applied with a laser fluence of 28 mJ/cm2 at 532 nm optical wavelength for 5 min. The therapeutic efficiency was further improved with the use of a higher laser fluence, and the treatment depth was improved to 3.5 mm with the use of 1,064 nm laser light at a fluence of 150 mJ/cm2. None of the laser-only and ultrasound-only treatments were able to remove any melanoma cells. The treatment outcome was validated with histological analyses and photoacoustic imaging. This study opens the possibility of USaLT for melanoma that is currently treated by laser therapy, but at a much lower laser fluence level, hence improving the safety potential of laser therapy.


Assuntos
Galinhas , Melanoma , Animais , Melanoma/radioterapia , Melanoma/patologia , Terapia por Ultrassom/métodos , Terapia a Laser/métodos , Linhagem Celular Tumoral , Técnicas Fotoacústicas/métodos
15.
Heliyon ; 10(15): e35166, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170574

RESUMO

The study aimed to evaluate the chemical composition, antioxidant activity and techno-functionality of brewers' spent grain (BSG) treated with two-steps treatment involving 5, 15, and 25 min bath-ultrasonication (USB) continued with autoclave (AH) at 90, 110, and 130 °C and/or water-bath (CWH) at 80, 90, and 100 °C. The two-steps treatments slightly affected the water- and oil-holding capacity and extractable fat content. Most of the two-steps treatments increased the amount of flavan-3-ols and phenolic acids, up to 4 times higher compared to its control. The two-steps treatment involving CWH had no significant (p > 0.05) impact on fat content, antioxidants and techo-functionality of BSG. Up to 15 min USB increased the poly-unsaturated fatty acids and lowered the amount of saturated fatty acids. In conclusion, the two-steps treatment consists of USB (up to 15 min) continued with AH and CWH increased the amount of nutritional-related chemical composition such as UFA and phenolic acids as well as antioxidant activity of BSG.

16.
Poult Sci ; 103(10): 104148, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39142031

RESUMO

Avian pathogenic Escherichia coli (APEC) is a notable pathogen that frequently leads to avian colibacillosis, posing a substantial risk to both the poultry industry and public health. The commercial vaccines against avian colibacillosis are primarily inactivated vaccines, but their effectiveness is limited to specific serotypes. Recent advances have highlighted bacterial membrane vesicles (MV) as a promising candidate in vaccine research. How to produce bacterial MVs vaccines on a large scale is a significant challenge for the industrialization of MVs. The msbB gene encodes an acyltransferase and has been implicated in altering the acylation pattern of lipid A, leading to a decrease in lipid A content in lipopolysaccharides (LPS). Here, we evaluated the immunoprotective efficacy of MVs derived from the LPS low-expressed APEC strain FY26ΔmsbB, which was an APEC mutant strain with a deletion of the msbB gene. The nitrogen cavitation technique was employed to extract APEC MVs, with results indicating a significant increase in MVs yield compared to that obtained under natural culture. The immunization effectiveness was assessed, revealing that FY26ΔmsbB MVs elicited an antibody response of laying hens and facilitated bacterial clearance. Protective efficacy studies demonstrated that immunization with FY26ΔmsbB MVs conferred the immune protection in chickens challenged with the wild-type APEC strain FY26. Notably, LPS low-carried MVs recovered from the mutant FY26ΔmsbB also displayed cross-protective capabilities, and effectively safeguarding against infections caused by O1, O7, O45, O78, and O101 serotypes virulent APEC strains. These findings suggest that MVs generated from the LPS low-expressed APEC strain FY26ΔmsbB represent a novel and empirically validated subunit vaccine for the prevention and control of infections by various APEC serotypes.

17.
Ultrason Sonochem ; 110: 107022, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163692

RESUMO

In the work, the 1/2 order subharmonic wave of two coupling cavitation bubbles is investigated numerically via Fourier spectrum analysis. By analyzing the dynamics of bubble, we find that the mutual interaction between bubbles can affect the appearance of 1/2 order subharmonic. The results of parameter dependence show that the intensity of 1/2 order subharmonic would be promoted or inhibited with the increase of mutual interaction. The higher the driving amplitude or the smaller the distance between bubbles, the stronger the mutual interaction is, and also the greater the promotion or suppression of the 1/2 order subharmonic is. Moreover, while the 1/2 order subharmonic occurs, the energy of bubble would alternate between two different peaks, and the temperature inside bubble has a similar fluctuation while the bubble collapses. This qualitative analysis suggests that the bubble's dynamics for multi-bubble case is complex. Understanding the generation of subharmonic of bubble's dynamics is of great significance for helpful applying of cavitation bubble.

18.
Biomed Microdevices ; 26(3): 37, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160324

RESUMO

Ultrasound radiation has been widely used in biomedical application for both diagnosis and therapy. Metal oxides nanoparticles (NPs), like ZnO or TiO2 NPs, have been widely demonstrated to act as excellent sonocatalysts and significantly enhance cavitation at their surface, making them optimal for sonodynamic cancer therapy. These NPs often possess semiconductive and piezoelectric properties that contribute to the complex phenomena occurring at the water-oxide interface during sonostimulation. Despite the great potential in applied sonocatalysis and water splitting, the complex mechanism that governs the phenomenon is still a research subject. This work investigates the role of piezoelectric ZnO micro- and nano-particles in ultrasound-assisted water oxidation. Three metal oxides presenting fundamental electronic and mechanical differences are evaluated in terms of ultrasound-triggered reactive oxygen species generation in aqueous media: electromechanically inert SiO2 NPs, semiconducting TiO2 NPs, piezoelectric and semiconducting ZnO micro- and nanoparticles with different surface areas and sizes. The presence of silver ions in the aqueous solution was further considered to impart a potential electron scavenging effects and better evaluate the oxygen generation performances of the different structures. Following sonoirradiation, the particles are optically and chemically analyzed to study the effect of sonostimulation at their surface. The production of gaseous molecular oxygen is measured, revealing the potential of piezoelectric particles to generate oxygen under hypoxic conditions typical of some cancer environments. Finally, the best candidates, i.e. ZnO nano and micro particles, were tested on osteosarcoma and glioblastoma cell lines to demonstrate their potential for cancer treatment.


Assuntos
Oxirredução , Água , Óxido de Zinco , Água/química , Catálise , Óxido de Zinco/química , Humanos , Titânio/química , Neoplasias/terapia , Ondas Ultrassônicas , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Óxidos/química
19.
Mol Ther Methods Clin Dev ; 32(3): 101277, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38983873

RESUMO

Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.

20.
Infect Drug Resist ; 17: 2803-2813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989008

RESUMO

Background: The present study aimed to construct and validate a nomogram based on clinical metrics to identify CPTB. Patients and Methods: The present study retrospectively recruited pulmonary tuberculosis (PTB) patients admitted to Jiashan County First People's Hospital in China from November 2018 to September 2023. PTB patients were classified into the CPTB group and the non-CPTB group based on chest computed tomography findings, and were randomly allocated to the training set (70%) and the validation cohort (30%). The training set and validation set were used to establish and validate nomogram, respectively. Multivariate logistic regression analysis (MLSA) was used to identify the independent risk factors for CPTB in patients with PTB. Statistically significant variables in the MLSA were then used to construct a nomogram predicting CPTB in patients with PTB. The receiver operating characteristic (ROC) curve, calibration curve analysis (CCA), and decision curve analysis (DCA) were used for the evaluation of the nomogram. Results: A total of 293 PTB patients, including 208 in the training set (85 CPTB) and 85 in the validation set (33 CPTB\), were included in this study. Stepwise MLSA showed that sputum smear (≥2+), smoking(yes), glycosylated hemoglobin A1c(HbA1c), hemoglobin (HB), and systemic inflammatory response index (SIRI) were independent risk factors for the development of cavitation in patients with PTB. The nomogram identifying the high-risk CPTB patients was successfully established and showed a strong predictive capacity, with area under the curves (AUCs) of 0.875 (95% CI:0.806-0.909) and 0.848 (95% CI:0.751-0.946) in the training set and validation set respectively. In addition, the CCA and DCA corroborated the nomogram's high level of accuracy and clinical applicability within both the training and validation sets. Conclusion: The constructed nomogram, consisting of sputum smear positivity, smoking, HbA1C, HB, and SIRI, serves as a practical and effective tool for early identification and personalized management of CPTB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA