Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Methods Mol Biol ; 2819: 125-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028505

RESUMO

Many approaches for measuring three-dimensional chromosomal conformations rely upon formaldehyde crosslinking followed by subsequent proximity ligation, a family of methods exemplified by 3C, Hi-C, etc. Here we provide an alternative crosslinking-free procedure for high-throughput identification of long-range contacts in the chromosomes of enterobacteria, making use of contact-dependent transposition of phage Mu to identify distant loci in close contact. The procedure described here will suffice to provide a comprehensive map of transposition frequencies between tens of thousands of loci in a bacterial genome, with the resolution limited by the diversity of the insertion site library used and the sequencing depth applied.


Assuntos
Mapeamento Cromossômico , Cromossomos Bacterianos , Escherichia coli , Escherichia coli/genética , Cromossomos Bacterianos/genética , Mapeamento Cromossômico/métodos , Bacteriófago mu/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Elementos de DNA Transponíveis/genética
2.
EcoSal Plus ; : eesp00012022, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864557

RESUMO

Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.

3.
Biochemistry (Mosc) ; 89(4): 653-662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831502

RESUMO

Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.


Assuntos
Plasmídeos , Plasmídeos/metabolismo , Plasmídeos/genética , DNA/química , DNA/genética , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Genoma
4.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606508

RESUMO

Genes are not randomly dispersed within the nuclear space, instead they occupy precise sites either with respect to the nuclear lamina as well as to each other. This observation stands at the basis of the today well accepted concept of nuclear territories where any chromosome shows reproducible spatial connections with a selection of others in a general picture that meets a functional criterion where genes that answer the same stimuli are grouped in the same sites. In fact, transcription is not visible widely dispersed throughout the nucleus but is gathered in several 'granules', called transcription factories that accommodates ~10 genes concurrently transcribed. This dynamic behavior of chromosomes is allowed by changes in chromatin plasticity that are governed by several classes of proteins that either modify its building or induce post­translational modifications in the protein component of nucleosomes, triggering formation of chromosome loops that modify the location of specific sites along the DNA strand. For example, transcription associated to nuclear receptors benefits of the generation of nuclear ROS that induce nicks following activation of the DNA repair apparatus that enhance helix unfolding and chromosome bridging. In the present review, the role that protocols facing elucidation of chromosome architecture are playing and will play in the near future were highlighted in order to investigate composition of the transcription factories assembled in response of a specific trigger: The estrogen­sensitive transcription was cited but the authors are convinced that the same portrait will be observed with a multitude of (if not all) other stimuli.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Cromossomos/genética , Processamento de Proteína Pós-Traducional , Expressão Gênica
5.
Methods Mol Biol ; 2769: 167-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315397

RESUMO

In recent years, important efforts have been made to understand how the expression of a specific gene repertoire correlates with chromatin accessibility, histone mark deposition, as well as with chromatin looping establishing connectivity with regulatory regions. The emergence of new techniques for genome-wide analyses and their progressive optimization to work on low amounts of material allows the scientific community to obtain an integrated view of transcriptional landscapes in physiology and disease. Here, we describe our own experience aiming at correlating the TCF-4/ß-catenin cistrome during liver tumorigenesis with chromatin remodeling, histone mark modifications, and long-distance DNA looping.


Assuntos
Cromatina , Neoplasias Hepáticas , Animais , Camundongos , Cromatina/genética , Estudo de Associação Genômica Ampla , Cromossomos , DNA , Neoplasias Hepáticas/genética
6.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38092066

RESUMO

Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.


Assuntos
Besouros , Animais , Besouros/genética , Genoma , Sequências Repetitivas de Ácido Nucleico , Cromossomo X , Elementos de DNA Transponíveis/genética , Filogenia
7.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888276

RESUMO

Ganoderma lucidum exhibits the ability to synthesize a diverse range of biologically active molecules with significant pharmaceutical potential, including xylomannan and fucogalactan, which have demonstrated antitumor activity. However, there exists considerable intra-species variability in the capacity to produce these metabolites at high concentrations, likely reflecting the high genomic diversity observed from a limited number of strains sequenced to date. We employed high-throughput shotgun sequencing to obtain the complete genome sequence of G. lucidum strain 5.1, which is distinguished by its remarkable xylomannan synthesis capabilities. Through the utilization of semi-automatic reordering based on conformation capture (Hi-C) data, we substantially enhanced the assembly process, resulting in the generation of 12 chromosome-level scaffolds with a cumulative length of 39 Mbp. By employing both de novo and homology-based approaches, we performed comprehensive annotation of the genome, thereby identifying a diverse repertoire of genes likely involved in polysaccharide biosynthesis. The genome sequence generated in this study serves as a valuable resource for elucidating the molecular mechanisms underlying the medicinal potential of Ganoderma species, discovering novel pharmaceutically valuable compounds, and elucidating the ecological mechanisms of the species. Furthermore, the chromosome contact map obtained for the first time for this species extends our understanding of 3D fungal genomics and provides insights into the functional and structural organization within the fungal kingdom.

8.
Curr Protoc ; 3(10): e899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818863

RESUMO

Cis-regulatory elements (cREs) and their long-range interactions are crucial for spatial-temporal gene regulation. While cREs can be characterized as accessible chromatin sequences, comprehensively identifying their spatial interactions remains a challenge. We recently developed a method, HiCAR (Hi-C on Accessible Regulatory DNA), which combines Tn5 transposase and chromatin proximity ligation to analyze open chromatin-anchored interactions in low-input cells. Application of HiCAR in human embryonic stem cells and lymphoblastoid cells reveals high-resolution chromatin contacts with efficiency comparable to in situ Hi-C across various distance ranges. Moreover, HiCAR was successfully applied to 30,000 primary human muscle stem cells, showcasing its potential for analyzing chromatin accessibility and looping in low-input primary cells and clinical samples. Here, we provide a detailed step-by-step protocol to perform the updated HiCAR experiments. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Tn5 Transposase Assembly Basic Protocol 2: HiCAR Library Preparation.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , DNA/genética , Sequências Reguladoras de Ácido Nucleico , Biblioteca Gênica
9.
Plant J ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840457

RESUMO

Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.

10.
Front Cell Dev Biol ; 11: 1219968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457299

RESUMO

3D genome organization regulates gene expression in different physiological and pathological contexts. Characterization of chromatin structure at different scales has provided information about how the genome organizes in the nuclear space, from chromosome territories, compartments of euchromatin and heterochromatin, topologically associated domains to punctual chromatin loops between genomic regulatory elements and gene promoters. In recent years, chromosome conformation capture technologies have also been used to characterize structural variations (SVs) de novo in pathological conditions. The study of SVs in cancer, has brought information about transcriptional misregulation that relates directly to the incidence and prognosis of the disease. For example, gene fusions have been discovered arising from chromosomal translocations that upregulate oncogenes expression, and other types of SVs have been described that alter large genomic regions encompassing many genes. However, studying SVs in 2D cannot capture all their regulatory implications in the genome. Recently, several bioinformatic tools have been developed to identify and classify SVs from chromosome conformation capture data and clarify how they impact chromatin structure in 3D, resulting in transcriptional misregulation. Here, we review recent literature concerning bioinformatic tools to characterize SVs from chromosome conformation capture technologies and exemplify their vast potential to rebuild the 3D landscape of genomes in cancer. The study of SVs from the 3D perspective can produce essential information about drivers, molecular targets, and disease evolution.

11.
Epigenetics Chromatin ; 16(1): 24, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322523

RESUMO

BACKGROUND: The three-dimensional configuration of the eukaryotic genome is an emerging area of research. Chromosome conformation capture outlined genome segregation into large scale A and B compartments corresponding mainly to transcriptionally active and repressive chromatin. It remains unknown how the compartmentalization of the genome changes in growing oocytes of animals with hypertranscriptional type of oogenesis. Such oocytes are characterized by highly elongated chromosomes, called lampbrush chromosomes, which acquire a typical chromomere-loop appearance, representing one of the classical model systems for exploring the structural and functional organization of chromatin domains. RESULTS: Here, we compared the distribution of A/B compartments in chicken somatic cells with chromatin domains in lampbrush chromosomes. We found that in lampbrush chromosomes, the extended chromatin domains, restricted by compartment boundaries in somatic cells, disintegrate into individual chromomeres. Next, we performed FISH-mapping of the genomic loci, which belong to A or B chromatin compartments as well as to A/B compartment transition regions in embryonic fibroblasts on isolated lampbrush chromosomes. We found, that in chicken lampbrush chromosomes, clusters of dense compact chromomeres bearing short lateral loops and enriched with repressive epigenetic modifications generally correspond to constitutive B compartments in somatic cells. A compartments align with lampbrush chromosome segments with smaller, less compact chromomeres, longer lateral loops, and a higher transcriptional status. Clusters of small loose chromomeres with relatively long lateral loops show no obvious correspondence with either A or B compartment identity. Some genes belonging to facultative B (sub-) compartments can be tissue-specifically transcribed during oogenesis, forming distinct lateral loops. CONCLUSIONS: Here, we established a correspondence between the A/B compartments in somatic interphase nucleus and chromatin segments in giant lampbrush chromosomes from diplotene stage oocytes. The chromomere-loop structure of the genomic regions corresponding to interphase A and B compartments reveals the difference in how they are organized at the level of chromatin domains. The results obtained also suggest that gene-poor regions tend to be packed into chromomeres.


Assuntos
Cromatina , Cromossomos , Animais , Cromatina/genética , Cromossomos/genética , Núcleo Celular , Galinhas , Oócitos
12.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37197899

RESUMO

Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.


Assuntos
Cromossomos , Genômica , Genoma Fúngico/genética , Replicação do DNA , Fungos/genética
13.
Methods Mol Biol ; 2656: 109-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249868

RESUMO

The final data-generation step of genome-wide profiling of any epigenetic parameter typically involves DNA deep sequencing which yields large datasets that must then be computationally analyzed both individually and collectively to comprehensively describe the epigenetic programming that dictates cell fate and function. Here, we describe computational pipelines for analysis of bulk mepigenomic profiling data, including whole-genome bisulfite sequencing (WGBS) to detect DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to detect genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to detect genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to detect 3-dimensional interactions among distant genomic regions. In addition, we describe Chromatin State Discovery and Characterization (ChromHMM) methodology to integrate data from these individual analyses, plus that from RNA-seq analysis of gene expression, to obtain the most comprehensive overall assessment of epigenetic programming associated with gene expression.


Assuntos
Cromatina , Epigenômica , Epigenômica/métodos , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Epigênese Genética , Células-Tronco
14.
Methods Mol Biol ; 2656: 71-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249867

RESUMO

Epigenomics encompasses analyses of a variety of different epigenetic parameters which, collectively, make up the epigenetic programming that dictates cell fate and function. Here, protocols are provided for four different epigenomic methods including whole-genome bisulfite sequencing (WGBS) to assess DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to assess genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to assess genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to assess three-dimensional interactions among distant genomic regions, plus computational methodology to integrate data from those four methodologies using Chromatin State Discovery and Characterization (ChromHMM) to obtain the most comprehensive overall assessment of epigenetic programming.


Assuntos
Cromatina , Epigenômica , Epigenômica/métodos , Análise de Sequência de DNA/métodos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Epigênese Genética , Células-Tronco
15.
Methods Mol Biol ; 2655: 41-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212987

RESUMO

This protocol provides specific details on how to perform Hi-C, the genome-wide version of Chromosome Conformation Capture (3C) followed by high-throughput sequencing, in Drosophila embryos. Hi-C provides a genome-wide population-averaged snapshot of the 3D genome organization within nuclei. In Hi-C, formaldehyde-cross-linked chromatin is enzymatically digested using restriction enzymes; digested fragments are biotinylated and subjected to proximity ligation; ligated fragments are purified using streptavidin followed by paired-end sequencing. Hi-C allows the detection of higher order folding structures such as topologically associated domains (TADs) and active/inactive compartments (A/B compartments, respectively). Performing this assay in developing embryos gives the unique opportunity to investigate dynamic chromatin changes when 3D chromatin structure is established in embryogenesis.


Assuntos
Cromossomos , Drosophila , Animais , Drosophila/genética , Mapeamento Cromossômico/métodos , Cromatina/genética , Núcleo Celular/genética
16.
Biomark Med ; 17(1): 17-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013851

RESUMO

Background: DNA probes have been widely used as diagnostic tools for translocations. This study sought to design a screening tool using ssDNA probes and chromosome conformation capture (3C) library fragment hybridization. Method: The authors focused on developing a probe for the juxtaposed region of MYC and TRD. Fragments of the MYC gene with a thiol modification (MYC-Au NP probe) were functionalized by gold nanoparticles (Au NPs). Then TRD probes were immobilized on a nitrocellulose surface. Hybridization between DNA probes and 3C library fragments of SKW3 cells was determined by color intensity. Results: Optimal hybridization of the 3C library sample of the cell line to probes showed higher color intensity than human umbilical vein endothelial cells. Conclusion: Combining 3C-based techniques and DNA-DNA hybridization can identify rearrangements in cancer cells.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Translocação Genética , Ouro , Células Endoteliais , Cromossomos , Sondas de DNA/genética , DNA/genética , Técnicas Biossensoriais/métodos
17.
Curr Issues Mol Biol ; 45(3): 2549-2560, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36975537

RESUMO

Understanding the three-dimensional (3D) structure of chromatin is invaluable for researching how it functions. One way to gather this information is the chromosome conformation capture (3C) technique and its follow-up technique Hi-C. Here, we present ParticleChromo3D+, a containerized web-based genome structure reconstruction server/tool that provides researchers with a portable and accurate tool for analyses. Additionally, ParticleChromo3D+ provides a more user-friendly way to access its capabilities via a graphical user interface (GUI). ParticleChromo3D+ can save time for researchers by increasing the accessibility of genome reconstruction, easing usage pain points, and offloading computational processing/installation time.

18.
Plant J ; 114(6): 1490-1505, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971060

RESUMO

Australian pine (Casuarina spp.) is extensively planted in tropical and subtropical regions for wood production, shelterbelts, environmental protection, and ecological restoration due to their superior biological characteristics, such as rapid growth, wind and salt tolerance, and nitrogen fixation. To analyze the genomic diversity of Casuarina, we sequenced the genomes and constructed de novo genome assemblies of the three most widely planted Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. We generated chromosome-scale genome sequences using both Pacific Biosciences (PacBio) Sequel sequencing and chromosome conformation capture technology (Hi-C). The total genome sizes for C. equisetifolia, C. glauca, and C. cunninghamiana are 268 942 579 bp, 296 631 783 bp, and 293 483 606 bp, respectively, of which 25.91, 27.15, and 27.74% were annotated as repetitive sequences. We annotated 23 162, 24 673, and 24 674 protein-coding genes in C. equisetifolia, C. glauca, and C. cunninghamiana, respectively. We then collected branchlets from male and female individuals for whole-genome bisulfite sequencing (BS-seq) to explore the epigenetic regulation of sex determination in these three species. Transcriptome sequencing (RNA-seq) revealed differential expression of phytohormone-related genes between male and female plants. In summary, we generated three chromosome-level genome assemblies and comprehensive DNA methylation and transcriptome datasets from both male and female material for three Casuarina species, providing a basis for the comprehensive investigation of genomic diversity and functional gene discovery of Casuarina in the future.


Assuntos
Cromossomos , Epigênese Genética , Austrália , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Anotação de Sequência Molecular
19.
Front Genet ; 14: 1129207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760998

RESUMO

Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.

20.
Immunol Cell Biol ; 101(4): 345-357, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710659

RESUMO

The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.


Assuntos
Elementos Facilitadores Genéticos , Genes myc , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA