Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Hazard Mater ; 471: 134442, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688222

RESUMO

To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 µg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.

2.
Bull Environ Contam Toxicol ; 112(5): 66, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643435

RESUMO

In this study, the toxicogenomic effects of five cytostatics (tamoxifen, methotrexate, capecitabine, cyclophosphamide, and ifosfamide) on fathead minnow (Pimephales promelas) larvae were evaluated. Post-fertilization eggs were exposed to increasing concentrations of the drugs for six days. The expression levels of two genetic biomarkers for toxicity and four thyroid hormone-related gene pathways were measured. Interestingly, the results showed that all concentrations of the five cytostatics affect the transcription levels of both toxicity biomarker genes. Additionally, the thyroid hormone-related genes had different expression levels than the control, with the most significant changes observed in those larvae exposed to cyclophosphamide and ifosfamide. While a previous study found no effects on fish morphology, this study suggests that the five cytostatics modify subtle molecular responses of P. promelas, highlighting the importance of assessing multibiological level endpoints throughout the lifecycle of animals to understand the full portrait of potential effects of cytostatics and other contaminants.


Assuntos
Cyprinidae , Citostáticos , Animais , Larva , Ifosfamida , Toxicogenética , Cyprinidae/genética , Ciclofosfamida , Hormônios Tireóideos
3.
Biomedicines ; 12(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38540160

RESUMO

The inhibition of the Mdm2-p53 protein-protein interaction is a promising strategy for anticancer therapy. However, the problem of developing secondary chemoresistance in tumors treated with such drugs has not yet been sufficiently studied. In this work, we compared the properties of a drug-resistant cell line obtained during long-term cultivation in the presence of an Mdm2 inhibitor, Nutlin-3a, with a similarly obtained line insensitive to the cytostatic drug paclitaxel. We first confirmed the higher safety levels of Mdm2 inhibitors when compared with cytostatics in terms of the development of secondary chemoresistance. We showed that Nutlin-3a affects both the targeted p53-mediated cellular machinery and the universal ABC-mediated efflux mechanism. While both targeted and general defense mechanisms are activated by the Mdm2 inhibitor, it still increases the susceptibility of tumor cells to other drugs. The results obtained indicate that the risks of developing chemoresistance under the therapy with a targeted agent are fundamentally lower than during cytotoxic therapy.

4.
Food Res Int ; 176: 113798, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163709

RESUMO

Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-ß-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-ß-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 µg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 µg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.


Assuntos
Camellia , Citostáticos , Saponinas , Humanos , Animais , Distribuição Contracorrente/métodos , Antioxidantes/farmacologia , Citostáticos/análise , Camellia/química , Células HeLa , Glicosídeos/química , Saponinas/análise , Flavonoides/análise
5.
Basic Clin Pharmacol Toxicol ; 134(1): 165-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37823683

RESUMO

The incidence of fatal adverse drug reactions (ADRs) in hospitals varies widely, and ADRs are often underreported. The impact of medical safety processes is not easily evaluated, and although medical practice changes constantly, little is known about ADR trends. This study concentrated on the current incidence and properties of fatal ADRs occurring in a university hospital and compared the results with two previous studies performed in the same hospital. We investigated retrospectively all 1236 deaths that occurred during 2019 in the Helsinki University Hospital. All the cases were evaluated by a team of experts, and the causality was assessed using the categories by World Health Organization and Uppsala monitoring centre. Suicides were excluded. Among death cases, we identified 65 certain or probable ADR cases (5.3%), representing 0.011% of all hospital admissions. Cytostatics and antithrombotics remained the largest drug classes, with neutropenia or sepsis and bleedings as the most common fatal ADRs. Compared with our earlier studies, warfarin caused less, and direct oral anticoagulants caused more fatal bleedings, reflecting the drug usage among the population. In contrast to earlier studies, contrast media and insulin did not cause any fatal ADRs, which may reflect an improvement in pharmacovigilance awareness among healthcare workers.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Suicídio , Humanos , Hospitais Universitários , Estudos Retrospectivos , Sistemas de Notificação de Reações Adversas a Medicamentos , Hospitalização , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia
6.
J Environ Manage ; 348: 119314, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857217

RESUMO

Over the past years, there has been an increasing concern about the occurrence of antineoplastic drugs in water bodies. The incomplete removal of these pharmaceuticals from wastewaters has been confirmed by several scientists, making it urgent to find a reliable technique or a combination of techniques capable to produce clean and safe water. In this work, the combination of nanofiltration and ozone (O3)-based processes (NF + O3, NF + O3/H2O2 and NF + O3/H2O2/UVA) was studied aiming to produce clean water from wastewater treatment plant (WWTP) secondary effluents to be safely discharged into water bodies, reused in daily practices such as aquaculture activities or for recharging aquifers used as abstraction sources for drinking water production. Nanofiltration was performed in a pilot-scale unit and O3-based processes in a continuous-flow column. The peroxone process (O3/H2O2) was considered the most promising technology to be coupled to nanofiltration, all the target pharmaceuticals being removed at an extent higher than 98% from WWTP secondary effluents, with a DOC reduction up to 92%. The applicability of the clean water stream for recharging aquifers used as abstraction sources for drinking water production was supported by a risk assessment approach, regarding the final concentrations of the target pharmaceuticals. Moreover, the toxicity of the nanofiltration retentate, a polluted stream generated from the nanofiltration system, was greatly decreased after the application of the peroxone process, which evidences the positive impact on the environment of implementing a NF + O3/H2O2 process.


Assuntos
Antineoplásicos , Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Preparações Farmacêuticas , Oxirredução
7.
Pharmaceutics ; 15(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376076

RESUMO

Nowadays, biomedicine is a multidisciplinary science that requires a very broad approach to the study and analysis of various phenomena essential for a better understanding of human health. This study deals with the use of numerical simulations to better understand the processes of cancer viability and apoptosis in treatment with commercial chemotherapeutics. Starting from many experiments examining cell viability in real-time, determining the type of cell death and genetic factors that control these processes, a lot of numerical results were obtained. These in vitro test results were used to create a numerical model that gives us a new angle of observation of the proposed problem. Model systems of colon and breast cancer cell lines (HCT-116 and MDA-MB-231), as well as a healthy lung fibroblast cell line (MRC-5), were treated with commercial chemotherapeutics in this study. The results indicate a decrease in viability and the appearance of predominantly late apoptosis in the treatment, a strong correlation between parameters. A mathematical model was created and employed for a better understanding of investigated processes. Such an approach is capable of accurately simulating the behavior of cancer cells and reliably predicting the growth of these cells.

8.
Dokl Biol Sci ; 509(1): 103-106, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37208575

RESUMO

Developing technologies for efficient targeted drug delivery for oncotherapy requires new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. A new approach to three-dimensional analysis of the intracellular distribution of cytostatics was developed using fluorescence scanning optical-probe nanotomography. A correlative analysis of the nanostructure and distribution of injected doxorubicin in MCF-7 human breast adenocarcinoma cells revealed the features of drug penetration and accumulation in the cell. The technology is based on the principles of scanning optical probe nanotomography and is applicable to studying the distribution patterns of various fluorescent or fluorescence-labelled substances in cells and tissues.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Humanos , Feminino , Células MCF-7 , Corantes Fluorescentes , Doxorrubicina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adenocarcinoma/tratamento farmacológico
9.
Sci Total Environ ; 891: 164385, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244605

RESUMO

To efficiently remove trace Pt-based cytostatic drugs (Pt-CDs) from aqueous environments, a comparative investigation was conducted on the adsorption behavior of three commercial adsorbents including cysteine-functionalized silica gel (Si-Cys), 3-(diethylenetriamino) propyl-functionalized silica gel (Si-DETA) and open-celled cellulose MetalZorb® sponge (Sponge). The research on the adsorption of cisplatin and carboplatin encompasses investigations of pH dependence, adsorption kinetics, adsorption isotherms, and adsorption thermodynamics. The obtained results were compared with those of PtCl42- to better understand the adsorption mechanisms. The adsorption of cisplatin and carboplatin by Si-Cys was significantly better than Si-DETA and Sponge, which suggested that in chelation-dominated chemisorption, thiol groups provided high-affinity sites for Pt(II) complexation. Adsorption of the anion PtCl42- was more pH dependent and generally superior to that of cisplatin and carboplatin, benefiting from the contribution of ion association with protonated surfaces. The removal process of aqueous Pt(II) compounds occurred by the hydrolysis of complexes in solution and subsequent adsorption, and the specific adsorption process was explained by the synergistic action of ion association and chelation mechanisms. The rapid adsorption processes involving diffusion and chemisorption were well described by pseudo-second-order kinetic model. The isotherm studies suggested monolayer adsorption, consistent with the Langmuir model. Indicated from the adsorption enthalpy results, the chelation of cisplatin and carboplatin with thiol groups was an endothermic reaction, while the adsorption of PtCl42- was exothermic. At 343 K, Si-Cys achieved 98.5 ± 0.1 % (cisplatin) and 94.1 ± 0.1 % (carboplatin) removal. To validate the obtained findings, the described process was applied to urine samples doped with Pt-CDs as analog of hospital wastewaters and the removal was very efficient, ranging from 72 ± 1 % to 95 ± 1 %, when using Si-Cys as adsorbent, although limited matrix effects were observed.


Assuntos
Citostáticos , Poluentes Químicos da Água , Platina , Cisteína , Polietilenoimina , Adsorção , Cisplatino , Carboplatina , Sílica Gel , DEET , Termodinâmica , Água , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
10.
Bull Exp Biol Med ; 174(6): 758-761, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37162627

RESUMO

When testing the proliferative activity of 14 strains of permafrost microorganisms in the reaction of blast transformation of human lymphocytes in vitro, a strain (Alcaligenes sp.) with mitogen properties was isolated (20-fold increase in the rate of lymphocyte proliferation in comparison with the control). Four strains activated lymphocyte proliferation by 3-9 times in comparison with the control. Three strains produced substances with cytostatic properties and reduced proliferation activity by 33-43% and one strain (Bacillus sp.) almost completely suppressed phytohemagglutinin-induced lymphocyte proliferation. These data indicate that strains with a unique immunobiological potential are concentrated in the population of permafrost microorganisms that have undergone rigorous evolutionary selection.


Assuntos
Linfócitos , Mitógenos , Humanos , Ativação Linfocitária , Fito-Hemaglutininas/farmacologia
11.
Invest New Drugs ; 41(1): 153-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36749469

RESUMO

One of the features that differentiate cancer cells is their increased proliferation rate, which creates an opportunity for general anti-tumor therapy directed against the elevated activity of replicative apparatus in tumor cells. Besides DNA synthesis, successful genome replication requires the reparation of the newly synthesized DNA. Malfunctions in reparation can cause fatal injuries in the genome and cell death. Recently we have found that the ultra-short single-stranded deoxyribose polynucleotides of random sequence (ssDNA) effectively inhibit the catalytic activity of DNA polymerase [Formula: see text]. This effect allowed considering these substances as potential anti-tumor drugs, which was confirmed experimentally both in vitro (using cancer cell cultures) and in vivo (using cancer models in mice). According to the obtained results, ssDNA significantly suppresses cancer development and tumor growth, allowing consideration of them as novel candidates for anti-cancer drugs.


Assuntos
DNA , Polidesoxirribonucleotídeos , Animais , Camundongos , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética
12.
Basic Clin Pharmacol Toxicol ; 131(6): 536-546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124882

RESUMO

Chemotherapy-induced mucositis is characterized by diarrhoea and villous atrophy. However, it is not well-understood why diarrhoea arises, why it only occurs with some chemotherapeutics and how it is related to villus atrophy. The objectives in this study were to determine (i) the relationship between chemotherapy-induced diarrhoea and villus atrophy and to (ii) establish and validate a rat diarrhoea model with clinically relevant endpoints. Male Wistar Han IGS rats were treated with saline, doxorubicin, idarubicin, methotrexate, 5-fluorouracil, irinotecan or 5-fluorouracil+irinotecan. After 72 h, jejunal tissue was taken for morphological, apoptotic and proliferative analyses, and faecal water content and change in body weight were determined. All treatments except methotrexate caused a similar reduction (≈42%) in villus height, but none of them altered mucosal crypt cell proliferation or apoptosis. Doxorubicin, idarubicin, irinotecan and 5-fluorouracil+irinotecan caused body weight reduction, but only irinotecan and idarubicin caused diarrhoea. No direct correlation between diarrhoea and villus height or body weight loss was observed. Therefore, studies of the mechanisms for chemotherapy-induced diarrhoea should focus on functional factors. Finally, the irinotecan and idarubicin diarrhoea models established in this study will be useful in developing supportive treatments of this common and serious adverse effect in patients undergoing chemotherapy.


Assuntos
Antineoplásicos , Mucosite , Ratos , Masculino , Animais , Irinotecano/farmacologia , Metotrexato/toxicidade , Idarubicina/efeitos adversos , Ratos Wistar , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/patologia , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Mucosa Intestinal , Fluoruracila/toxicidade , Peso Corporal , Doxorrubicina/toxicidade , Antineoplásicos/toxicidade , Atrofia/induzido quimicamente
13.
Genes (Basel) ; 13(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35886023

RESUMO

Little is known about optimally applying chemotherapeutic agents in a specific temporal sequence to rapidly reduce the tumor load and to improve therapeutic efficacy. The clinical optimization of drug efficacy while reducing side effects is still restricted due to an incomplete understanding of the mode of action and related tumor relapse mechanisms on the molecular level. The molecular characterization of transcriptomic drug signatures can help to identify the affected pathways, downstream regulated genes and regulatory interactions related to tumor relapse in response to drug application. We tried to outline the dynamic regulatory reprogramming leading to tumor relapse in relapsed MLL-rearranged pro-B-cell acute lymphoblastic leukemia (B-ALL) cells in response to two first-line treatments: dexamethasone (Dexa) and cytarabine (AraC). We performed an integrative molecular analysis of whole transcriptome profiles of each treatment, specifically considering public knowledge of miRNA regulation via a network-based approach to unravel key driver genes and miRNAs that may control the relapse mechanisms accompanying each treatment. Our results gave hints to the crucial regulatory roles of genes leading to Dexa-resistance and related miRNAs linked to chemosensitivity. These genes and miRNAs should be further investigated in preclinical models to obtain more hints about relapse processes.


Assuntos
Antineoplásicos , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Citarabina/farmacologia , Citarabina/uso terapêutico , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva
14.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408681

RESUMO

Kalanchoe species are succulents with anti-inflammatory, antioxidant, and analgesic properties, as well as cytotoxic activity. One of the most popular species cultivated in Europe is Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. In our study, we analyzed the phytochemical composition of K. daigremontiana water extract using UHPLC-QTOF-MS and estimated the cytotoxic activity of the extract on human ovarian cancer SKOV-3 cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry, luminometric, and fluorescent microscopy techniques. The expression levels of 92 genes associated with cell death were estimated via real-time PCR. The antioxidant activity was assessed via flow cytometry on human keratinocyte HaCaT cell line. The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical and FRAP (ferric-reducing antioxidant power) assays were also applied. We identified twenty bufadienolide compounds in the water extract and quantified eleven. Bersaldegenin-1,3,5-orthoacetate and bryophyllin A were present in the highest amounts (757.4 ± 18.7 and 573.5 ± 27.2 ng/mg dry weight, respectively). The extract showed significant antiproliferative and cytotoxic activity, induced depolarization of the mitochondrial membrane, and significantly arrested cell cycle in the S and G2/M phases of SKOV-3 cells. Caspases-3, 7, 8, and 9 were not activated during the treatment, which indicated non-apoptotic cell death triggered by the extract. Additionally, the extract increased the level of oxidative stress in the cancer cell line. In keratinocytes treated with menadione, the extract moderately reduced the level of oxidative stress. This antioxidant activity was confirmed by the DPPH and FRAP assays, where the obtained IC50 values were 1750 ± 140 and 1271.82 ± 53.25 µg/mL, respectively. The real-time PCR analysis revealed that the extract may induce cell death via TNF receptor (tumor necrosis factor receptor) superfamily members 6 and 10.


Assuntos
Antineoplásicos , Kalanchoe , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Kalanchoe/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Água
15.
Pharmaceutics ; 14(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456583

RESUMO

The effectiveness of chemotherapy in cancer cell regression is often limited by drug resistance, toxicity, and neoplasia heterogeneity. However, due to the significant complexities entailed by the many cancer growth processes, predicting the impact of interference and symmetry-breaking mechanisms is a difficult problem. To quantify and understand more about cancer drug pharmacodynamics, we combine in vitro with in silico cancer models. The anti-proliferative action of selected cytostatics is interrogated on human colorectal and breast adenocarcinoma cells, while an agent-based computational model is employed to reproduce experiments and shed light on the main therapeutic mechanisms of each chemotherapeutic agent. Multiple drug administration scenarios on each cancer cell line are simulated by varying the drug concentration, while a Bayesian-based method for model parameter optimisation is employed. Our proposed procedure of combining in vitro cancer drug screening with an in silico agent-based model successfully reproduces the impact of chemotherapeutic drugs in cancer growth behaviour, while the mechanisms of action of each drug are characterised through model-derived probabilities of cell apoptosis and division. We suggest that our approach could form the basis for the prospective generation of experimentally-derived and model-optimised pharmacological variables towards personalised cancer therapy.

16.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162944

RESUMO

Chemotherapy causes intestinal mucositis, which includes villous atrophy and altered mucosal barrier function. However, there is an uncertainty regarding how the reduced small-intestinal surface area affects the mucosal permeability of the small marker probe mannitol (MW 188), and how the mucosa responds to luminal irritants after chemotherapy. The aims in this study were to determine (i) the relationship between chemotherapy-induced villus atrophy and the intestinal permeability of mannitol and (ii) how the mucosa regulate this permeability in response to luminal ethanol and sodium dodecyl sulfate (SDS). This was investigated by treating rats with a single intraperitoneal dose of doxorubicin, irinotecan, or 5-fluorouracil. After 72 h, jejunum was single-pass perfused and mannitol permeability determined at baseline and after 15 min luminal exposure to 15% ethanol or 5 mg/mL SDS. Tissue samples for morphological analyses were sampled from the perfused segment. All three chemotherapeutics caused a similar 30% reduction in villus length. Mannitol permeability increased with irinotecan (1.3-fold) and 5-fluorouracil (2.5-fold) and was reduced with doxorubicin (0.5-fold), suggesting that it is not epithelial surface area alone that regulates intestinal permeability to mannitol. There was no additional increase in mannitol permeability induced by luminal ethanol or SDS in the chemotherapy-treated rats compared to controls, which may be related to the relatively high basal permeability of mannitol compared to other common low-permeability probes. We therefore suggest that future studies should focus on elucidating the complex interplay between chemotherapy in combination with luminal irritants on the intestinal permeability of other probes.


Assuntos
Doxiciclina/efeitos adversos , Fluoruracila/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Irinotecano/efeitos adversos , Irritantes/efeitos adversos , Manitol/metabolismo , Mucosite/patologia , Animais , Etanol/efeitos adversos , Injeções Intraperitoneais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Mucosite/induzido quimicamente , Mucosite/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Permeabilidade , Ratos , Dodecilsulfato de Sódio/efeitos adversos
17.
Probl Radiac Med Radiobiol ; 26: 235-247, 2021 Dec.
Artigo em Inglês, Ucraniano | MEDLINE | ID: mdl-34965551

RESUMO

OBJECTIVE: development of the humanized system for cells cultivation outside the human organism (human-mouse)and investigation of the influence of ionizing radiation in increasing doses on the colony-forming ability ofhematopoietic progenitor cells. MATERIALS AND METHODS: Bone marrow samples of individuals without blood system diseases were cultivated in geldiffusion chambers with semi-solid agar in the abdominal cavity of CBA mice exposed to ionizing radiation action.Cell aggregates, which were obtained in the culture of diffusion chambers in vivo, were counted and colony-formingefficiency of bone marrow cells was determined. RESULTS: We revealed the stimulation of colony forming under the action of ionizing radiation in increasing doseson the animals-recipients of the chambers, which indirectly indicates the synthesis of colony-stimulating factor inthe mice organism and its permeation into the diffusion chambers with human bone marrow cells. The effect of cyto-statics action on the mice organism was investigated, which in experimentally selected dose cause stimulation ofcolony forming in cell cultures, both 24 hours and 2 hours after administration. CONCLUSIONS: The ability of hematopoietic progenitor cells of bone marrow to form colonies and clusters was eval-uated during the cultivation in semi-solid agar in gel diffusion chambers in vivo, as well as the association with thenumber of explanted cells in the appropriate range was established, which indicates the clonal nature of cell aggre-gates growth in culture. It was shown that the treatment of animals the day prior to experiment with administra-tion of cytostatics is comparable to the action of ionizing radiation and can be used to study hematopoiesis in«human-mouse¼ system.


Assuntos
Proliferação de Células/efeitos da radiação , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Doses de Radiação , Radiação Ionizante , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos CBA
18.
Bull Exp Biol Med ; 171(4): 435-440, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34542763

RESUMO

We compared the effect of Xymedon (100 mg/kg), Mexidol (50 mg/kg), and their combination on spermatogenesis indicators and functional state of spermatozoa in rats with Walker-256 carcinoma treated with doxorubicin (4 mg/kg) and cyclophosphamide (45 mg/kg) (once intraperitoneally on day 11 after tumor cells transplantation). Xymedon and Mexidol were injected intramuscularly for 10 days starting from day 11 of the experiment. The studied parameters were evaluated on experimental days 14 and 21. We have established that gonadoprotective effect of Xymedon developed gradually and persisted longer than that of Mexidol. It manifested in an increase in the number of epithelial spermatogenesis cells (spermatogonia by 3.2 times, early spermatids by 2.2 times, late spermatids by 2.9 times, and Leydig cells by 4 times) in the testes and also the proportion of viable progressively and non-progressively motile epididymal spermatozoa (by 2 times). The combination of Xymedon and Mexidol stimulated spermatogenesis (with restoration of the initial level of spermatocytes, an increase in the number of early spermatids by 65.5 and 99% in comparison with Xymedon alone and Mexidol alone, respectively) and increased the number of viable epididymal spermatozoa more effectively than Xymedon and Mexidol alone by 54 and 60%, respectively.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma 256 de Walker/tratamento farmacológico , Espermatogênese/efeitos dos fármacos , Animais , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/fisiopatologia , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Masculino , Picolinas/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Wistar , Análise do Sêmen , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Espermatozoides/fisiologia
19.
Int J Nanomedicine ; 16: 5651-5664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447247

RESUMO

BACKGROUND: A promising approach to solve the problem of cytostatic toxicity is targeted drug transport using magnetic nanoparticles (MNPs). PURPOSE: To use calculation to determine the optimal characteristics of the magnetic field for controlling MNPs in the body, and to evaluate the efficiency of magnetically controlled delivery of MNPs in vitro and in vivo to a tumour site in mice. MATERIAL AND METHODS: For the in vitro study, reference MNPs were used, while for in vivo studies, MNPs coated in polylactide including fluorescent indocyanine (MNPs-ICG) were used. The in vivo luminescence intensity study was performed in mice with tumours, with and without of a magnetic field at the sites of interest. The studies were performed on a hydrodynamic stand developed at the Institute of Experimental Medicine of the Almazov National Medical Research Centre of the Ministry of Health of Russia. RESULTS: The use of neodymium magnets facilitated selective accumulation of MNPs. One minute after the administration of MNPs-ICG to mice with a tumour, MNPs-ICG predominantly accumulated in the liver, in the absence and presence of a magnetic field, which indicates its metabolic pathway. The intensity of the fluorescence in the animals' livers did not change over time, although an increase in fluorescence in the tumour was observed in the presence of a magnetic field. CONCLUSION: This type of MNP, used in combination with a magnetic field of calculated strength, can form the basis for the development of magnetically controlled transport of cytostatic drugs into tumour tissue.


Assuntos
Citostáticos , Nanopartículas de Magnetita , Animais , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA