Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 109(4): 789-803, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797933

RESUMO

The shikimate pathway plays a central role in the biosynthesis of aromatic amino acids and specialized metabolites in plants. The first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) serves as a key regulatory point for the pathway in various organisms. These enzymes are important in regulating the shikimate pathway in multiple microbial systems. The mechanism of regulation of DAHPS is poorly understood in plants, and the role of tyrosine (Tyr) with respect to the three DAHPS isozymes from Arabidopsis thaliana was investigated. In vitro enzymatic analyses established that Tyr does not function as an allosteric regulator for the A. thaliana DAHPS isozymes. In contrast, Arabidopsis T-DNA insertional mutants for the DAHPS1 locus, dahps1, are hypersensitive to elevated Tyr. Tyr hypersensitivity can be reversed with tryptophan and phenylalanine supplementation, indicating that Tyr is affecting the shikimate pathway flux in the dahps1 mutant. Tyr treatment of Arabidopsis seedlings showed reduced accumulation of overexpressed DAHPS2 in the chloroplast. Further, bimolecular fluorescence complementation studies revealed that DAHPS2 interacts with a 14-3-3 protein in the cytosol, and this interaction is enhanced with Tyr treatment. This interaction with 14-3-3 may retain DAHPS2 in the cytosol, which prevents its ability to function in the chloroplast with elevated Tyr.


Assuntos
Arabidopsis/metabolismo , Citosol/metabolismo , Tirosina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica , Arabidopsis/genética , Cristalografia por Raios X , Fosfatos , Triptofano
3.
Int J Mol Sci ; 21(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102218

RESUMO

The leaf blade is the main photosynthetic organ and its morphology is related to light energy capture and conversion efficiency. We isolated a novel rice Dynamic Narrow-Rolled Leaf 1 (dnrl1) mutant showing reduced width of leaf blades, rolled leaves and lower chlorophyll content. The narrow-rolled leaf phenotype resulted from the reduced number of small longitudinal veins per leaf, smaller size and irregular arrangement of bulliform cells compared with the wild-type. DNRL1 was mapped to chromosome 7 and encoded a putative 3-deoxy-7-phosphoheptulonate synthase (DAHPS) which catalyzes the conversion of phosphoenolpyruvate and D-erythrose 4-phosphate to DAHP and phosphate. Sequence analysis revealed that a single base substitution (T-A) was detected in dnrl1, leading to a single amino acid change (L376H) in the coding protein. The mutation led to a lower expression level of DNRL1 as well as the lower activity of DAHPS in the mutant compared with the wild type. Genetic complementation and over-expression of DNRL1 could rescue the narrow-rolled phenotype. DNRL1 was constitutively expressed in all tested organs and exhibited different expression patterns from other narrow-rolled leaf genes. DNRL1-GFP located to chloroplasts. The lower level of chlorophyll in dnrl1 was associated with the downregulation of the genes responsible for chlorophyll biosynthesis and photosynthesis. Furthermore, dnrl1 showed significantly reduced levels of aromatic amino acids including Trp, Phe and Tyr. We conclude that OsDAHPS, encoded by DNRL1, plays a critical role in leaf morphogenesis by mediating the biosynthesis of amino acids in rice.


Assuntos
Aminoácidos Aromáticos/genética , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutação , Fenótipo , Fotossíntese , Folhas de Planta/anatomia & histologia
5.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30670586

RESUMO

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Assuntos
Alquil e Aril Transferases/química , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Prevotella nigrescens/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação Alostérica , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Pestic Biochem Physiol ; 141: 96-102, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28911748

RESUMO

The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein.


Assuntos
Glicina/análogos & derivados , Pisum sativum/metabolismo , Raízes de Plantas/metabolismo , Ácido Quínico/farmacologia , Ácido Chiquímico/metabolismo , Ácidos Cumáricos/metabolismo , Glicina/farmacologia , Hidroxibenzoatos/metabolismo , Pisum sativum/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Glifosato
7.
J Biol Chem ; 291(42): 21836-21847, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27502275

RESUMO

Multifunctional proteins play a variety of roles in metabolism. Here, we examine the catalytic function of the combined 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM) from Geobacillus sp. DAH7PS operates at the start of the biosynthetic pathway for aromatic metabolites, whereas CM operates in a dedicated branch of the pathway for the biosynthesis of amino acids tyrosine and phenylalanine. In line with sequence predictions, the two catalytic functions are located in distinct domains, and these two activities can be separated and retain functionality. For the full-length protein, prephenate, the product of the CM reaction, acts as an allosteric inhibitor for the DAH7PS. The crystal structure of the full-length protein with prephenate bound and the accompanying small angle x-ray scattering data reveal the molecular mechanism of the allostery. Prephenate binding results in the tighter association between the dimeric CM domains and the tetrameric DAH7PS, occluding the active site and therefore disrupting DAH7PS function. Acquisition of a physical gating mechanism to control catalytic function through gene fusion appears to be a general mechanism for providing allostery for this enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Corismato Mutase/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Aminoácidos Aromáticos/metabolismo , Corismato Mutase/genética , Cristalografia por Raios X , Geobacillus/enzimologia , Ácido Chiquímico/metabolismo
8.
Front Plant Sci ; 6: 538, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236327

RESUMO

Environmental stresses such as high light intensity and temperature cause induction of the shikimate pathway, aromatic amino acids (AAA) pathways, and of pathways downstream from AAAs. The induction leads to production of specialized metabolites that protect the cells from oxidative damage. The regulation of the diverse AAA derived pathways is still not well understood. To gain insight on that regulation, we increased AAA production in red grape Vitis vinifera cv. Gamay Red cell suspension, without inducing external stress on the cells, and characterized the metabolic effect of this induction. Increased AAA production was achieved by expressing a feedback-insensitive bacterial form of 3-deoxy- D-arabino-heptulosonate 7-phosphate synthase enzyme (AroG (*)) of the shikimate pathway under a constitutive promoter. The presence of AroG(*) protein led to elevated levels of primary metabolites in the shikimate and AAA pathways including phenylalanine and tyrosine, and to a dramatic increase in phenylpropanoids. The AroG (*) transformed lines accumulated up to 20 and 150 fold higher levels of resveratrol and dihydroquercetin, respectively. Quercetin, formed from dihydroquercetin, and resveratrol, are health promoting metabolites that are induced due to environmental stresses. Testing the expression level of key genes along the stilbenoids, benzenoids, and phenylpropanoid pathways showed that transcription was not affected by AroG (*). This suggests that concentrations of AAAs, and of phenylalanine in particular, are rate-limiting in production of these metabolites. In contrast, increased phenylalanine production did not lead to elevated concentrations of anthocyanins, even though they are also phenylpropanoid metabolites. This suggests a control mechanism of this pathway that is independent of AAA concentration. Interestingly, total anthocyanin concentrations were slightly lower in AroG(*) cells, and the relative frequencies of the different anthocyanins changed as well.

9.
Bioorg Chem ; 57: 242-250, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245459

RESUMO

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, which produces the aromatic amino acids as well as many other aromatic metabolites. DAH7PS catalyses an aldol-like reaction between phosphoenolpyruvate and erythrose 4-phosphate. Three phosphoenolpyruvate mimics, (R)-phospholactate, (S)-phospholactate and vinyl phosphonate [(E)-2-methyl-3-phosphonoacrylate], were found to competitively inhibit DAH7PS from Neisseria meningitidis, which is the pathogen responsible for bacterial meningitis. The most potent inhibitor was the vinyl phosphonate with a Ki value of 3.9±0.4µM. We report for the first time crystal structures of these compounds bound in the active site of a DAH7PS enzyme which reveals that the inhibitors bind to the active site of the enzyme in binding modes that mimic those of the predicted oxocarbenium and tetrahedral intermediates of the enzyme-catalysed reaction. Furthermore, the inhibitors accommodate the binding of a key active site water molecule. Together, these observations provide strong evidence that this active site water participates directly in the DAH7PS reaction, enabling the facial selectivity of the enzyme-catalysed reaction sequence to be delineated.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Inibidores Enzimáticos/química , Meningite Meningocócica/microbiologia , Neisseria meningitidis/enzimologia , Fosfoenolpiruvato/análogos & derivados , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/enzimologia , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/efeitos dos fármacos , Fosfoenolpiruvato/farmacologia , Água/química
10.
FEBS Lett ; 587(18): 3063-8, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23916814

RESUMO

3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway for the biosynthesis of aromatic amino acids. Allosteric regulation of Thermotoga maritima DAH7PS is mediated by L-Tyr binding to a discrete ACT regulatory domain appended to a core catalytic (ß/α)8 barrel. Variants of T. maritima DAH7PS (TmaDAH7PS) were created to probe the role of key residues in inhibitor selection. Substitution Ser31Gly severely reduced inhibition by L-Tyr. In contrast both L-Tyr and L-Phe inhibited the TmaHis29Ala variant, while the variant where Ser31 and His29 were interchanged (His29Ser/Ser31His), was inhibited to a greater extent by L-Phe than L-Tyr. These studies highlight the role and importance of His29 and Ser31 for determining both inhibitory ligand selectivity and the potency of allosteric response by TmaDAH7PS.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas de Bactérias/química , Fenilalanina/química , Thermotoga maritima/química , Tirosina/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Ensaios Enzimáticos , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Thermotoga maritima/enzimologia
11.
Protein Sci ; 22(8): 1087-99, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754471

RESUMO

Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/antagonistas & inibidores , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Neisseria meningitidis/enzimologia , Fenilalanina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica/fisiologia , Substituição de Aminoácidos , Aminoácidos Aromáticos/biossíntese , Aminoácidos Aromáticos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Estabilidade Enzimática , Retroalimentação Fisiológica , Neisseria meningitidis/patogenicidade , Fenilalanina/química , Multimerização Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Triptofano/química , Triptofano/metabolismo , Tirosina/química , Tirosina/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA