Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Toxicol Sci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954831

RESUMO

Phthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the U.S. population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue. Pregnant CD-1 dams were dosed orally with vehicle control (corn oil) or phthalate mixture (20 µg/kg/day, 200 µg/kg/day, 200 mg/kg/day, 500 mg/kg/day). Pregnant dams delivered pups naturally and ovaries and sera from the F1 females were collected at postnatal day (PND) 21, PND 60, 3 months, and 6 months. Sera were used to measure levels of C-reactive protein (CRP). Ovaries and sera were used for cytokine array analysis. RNA was isolated from F1 ovaries and used to quantify expression of selected cytokine genes. Prenatal exposure to the mixture significantly increased the levels of CRP at 200 µg/kg/day on PND 21 compared to controls. The mixture altered 6 immune factors in sera at PND 21 and 33 immune factors in the ovary and sera at 6 months compared to controls. The mixture increased ovarian expression of cytokines at PND 21 and decreased ovarian expression of cytokines at 6 months compared to controls. These data suggest that prenatal exposure to a phthalate mixture interferes with the immune response in F1 female mice long after initial exposure.

2.
J Neurol Sci ; 463: 123108, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38991324

RESUMO

In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.

3.
Genome Biol ; 25(1): 185, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004763

RESUMO

BACKGROUND: We recently identified ~ 10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in the human genome. These methylation variants are amenable to population studies, as DNA methylation measurements in blood provide information on epigenetic regulation throughout the body. Moreover, establishment of DNA methylation at human CoRSIVs is labile to periconceptional influences such as nutrition. Here, we analyze publicly available whole-genome bisulfite sequencing data on multiple tissues of each of two Holstein cows to determine whether CoRSIVs exist in cattle. RESULTS: Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual variation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, those in cattle are strongly associated with genetic variation. Also as in humans, we show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive to early embryonic environment, in the context of embryo culture during assisted reproduction. CONCLUSIONS: Our data indicate that CoRSIVs exist in cattle, as in humans, suggesting these systemic epigenetic variants may be common to mammals in general. To the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic outcomes, assessment of CoRSIV methylation at birth may become an important tool for optimizing agriculturally important traits. Moreover, adjusting embryo culture conditions during assisted reproduction may provide opportunities to tailor agricultural outcomes by engineering CoRSIV methylation profiles.


Assuntos
Metilação de DNA , Epigênese Genética , Bovinos , Animais , Humanos , Ilhas de CpG , Variação Genética
4.
Metabolites ; 14(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921474

RESUMO

Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) ß2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished ß2 adrenergic sensitivity. Although IL6R remained elevated, ß2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.

5.
Front Physiol ; 15: 1397262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919850

RESUMO

Introduction: Maternal obstructive sleep apnea (OSA) during pregnancy is the risk factor for impaired fetal growth with low birth weight in the offspring. However, it is unclear whether gestational intermittent hypoxia (IH, a hallmark of maternal OSA) has long-term detrimental consequences on the skeletal development of offspring. This study aimed to investigate postnatal maxillofacial bone growth and cartilage metabolism in male and female offspring that were exposed to gestational IH. Methods: Mother rats underwent IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2; 0% CO2) for 8 h per day during gestational days (GD) 7-20, and their male and female offspring were analyzed postnatally at 5 and 10 weeks of age. All male and female offspring were born and raised under normoxic conditions. Results: There was no significant difference in whole-body weight and tibial length between the IH male/female offspring and their control counterparts. In contrast, the mandibular condylar length was significantly shorter in the IH male offspring than in the control male offspring at 5 and 10 weeks of age, while there was no significant difference in the female offspring. Real-time polymerase chain reaction (PCR) showed that gestational IH significantly downregulated the mRNA level of SOX9 (a chondrogenesis marker) and upregulated the mRNA level of HIF-1α (a hypoxia-inducible factor marker) in the mandibular condylar cartilage of male offspring, but not in female offspring. Conclusion: Gestational IH induced underdeveloped mandibular ramus/condyles and reduced mRNA expression of SOX9, while enhancing mRNA expression of HIF-1α in a sex-dependent manner.

6.
Front Pediatr ; 12: 1394400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873584

RESUMO

Introduction: Limited knowledge exists regarding the impact of paternal smoking and alcohol exposure on the development of allergic rhinitis in offspring. Our study aimed to investigate the potential association between preconception paternal smoking and alcohol exposure and the likelihood of children allergic rhinitis. Methods: A retrospective case-control study of 556 prepubertal children aged 3-12 years was performed. The participants were 278 children with allergic rhinitis and 278 healthy controls matched for age and gender. Self-administered questionnaires were distributed and collected on-site, focusing on various factors related to the children's fathers, mothers, and the children themselves during the first year of life and the past 12 months, from March to October 2022. Results: Multivariate analysis demonstrated that paternal smoking, paternal alcohol consumption prior to conception, paternal allergic diseases, children with a family history of allergies, maternal allergic diseases and pregnancy complications were identified as independent risk factors for allergic rhinitis in their offspring. Moreover, after considering confounding factors, it was observed that paternal smoking exceeding 5 cigarettes per day in the year preceding pregnancy and exceeding 11 years significantly elevated the likelihood of allergic rhinitis in children (OR = 2.009 and 2.479, respectively). Furthermore, the consumption of alcohol by the father at intervals of less than one month in the year prior to pregnancy and a duration of alcohol consumption exceeding 11 years prior to pregnancy are both associated with a significantly increased risk of allergic rhinitis in children (OR = 2.005 and 3.149, respectively). Conclusions: Paternal smoking and alcohol consumption prior to conception contribute to an increased risk of allergic rhinitis in children, with the risk being dependent on the dosage and duration of exposure. Therefore, it is important to not only focus on personal and maternal environmental exposures when considering the occurrence risk of allergic rhinitis in children, but also to consider paternal detrimental exposures prior to conception.

8.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732510

RESUMO

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Assuntos
Aminoácidos , Doenças Cardiovasculares , Desenvolvimento Fetal , Microbioma Gastrointestinal , Rim , Humanos , Gravidez , Feminino , Aminoácidos/metabolismo , Rim/metabolismo , Animais , Microbioma Gastrointestinal/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Nefropatias , Fenômenos Fisiológicos da Nutrição Materna
9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731818

RESUMO

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Assuntos
Doenças Cardiovasculares , Efeitos Tardios da Exposição Pré-Natal , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Humanos , Gravidez , Animais , Feminino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/induzido quimicamente , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/etiologia , Exposição Materna/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Desenvolvimento Fetal/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Reprogramação Metabólica
10.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(6): 335-352, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38692912

RESUMO

Recent studies have highlighted the impact of disrupted maternal gut microbiota on the colonization of offspring gut microbiota, with implications for offspring developmental trajectories. The extent to which offspring inherit the characteristics of altered maternal gut microbiota remains elusive. In this study, we employed a mouse model where maternal gut microbiota disruption was induced using non-absorbable antibiotics. Systematic chronological analyses of dam fecal samples, offspring luminal content, and offspring gut tissue samples revealed a notable congruence between offspring gut microbiota profiles and those of the perturbed maternal gut microbiota, highlighting the profound influence of maternal microbiota on early-life colonization of offspring gut microbiota. Nonetheless, certain dominant bacterial genera in maternal microbiota did not transfer to the offspring, indicating a bacterial taxonomy-dependent mechanism in the inheritance of maternal gut microbiota. Our results embody the vertical transmission dynamics of disrupted maternal gut microbiota in an animal model, where the gut microbiota of an offspring closely mirrors the gut microbiota of its mother.


Assuntos
Microbioma Gastrointestinal , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Antibacterianos/farmacologia , Masculino , Gravidez
11.
Front Public Health ; 12: 1377456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706545

RESUMO

Regression discontinuity design (RDD) is a quasi-experimental approach to study the causal effect of an exposure on later outcomes by exploiting the discontinuity in the exposure probability at an assignment variable cut-off. With the intent of facilitating the use of RDD in the Developmental Origins of Health and Disease (DOHaD) research, we describe the main aspects of the study design and review the studies, assignment variables and exposures that have been investigated to identify short- and long-term health effects of early life exposures. We also provide a brief overview of some of the methodological considerations for the RDD identification using an example of a DOHaD study. An increasing number of studies investigating the effects of early life environmental stressors on health outcomes use RDD, mostly in the context of education, social and welfare policies, healthcare organization and insurance, and clinical management. Age and calendar time are the mostly used assignment variables to study the effects of various early life policies and programs, shock events and guidelines. Maternal and newborn characteristics, such as age, birth weight and gestational age are frequently used assignment variables to study the effects of the type of neonatal care, health insurance, and newborn benefits, while socioeconomic measures have been used to study the effects of social and welfare programs. RDD has advantages, including intuitive interpretation, and transparent and simple graphical representation. It provides valid causal estimates if the assumptions, relatively weak compared to other non-experimental study designs, are met. Its use to study health effects of exposures acting early in life has been limited to studies based on registries and administrative databases, while birth cohort data has not been exploited so far using this design. Local causal effect around the cut-off, difficulty in reaching high statistical power compared to other study designs, and the rarity of settings outside of policy and program evaluations hamper the widespread use of RDD in the DOHaD research. Still, the assignment variables' cut-offs for exposures applied in previous studies can be used, if appropriate, in other settings and with additional outcomes to address different research questions.


Assuntos
Projetos de Pesquisa , Humanos , Feminino , Recém-Nascido , Gravidez , Exposição Ambiental/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Análise de Regressão
12.
Front Endocrinol (Lausanne) ; 15: 1335855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800476

RESUMO

Introduction: Emerging data suggests liver disease may be initiated during development when there is high genome plasticity and the molecular pathways supporting liver function are being developed. Methods: Here, we leveraged our Collaborative Cross mouse model of developmental vitamin D deficiency (DVD) to investigate the role of DVD in dysregulating the molecular mechanisms underlying liver disease. We defined the effects on the adult liver transcriptome and metabolome and examined the role of epigenetic dysregulation. Given that the parental origin of the genome (POG) influences response to DVD, we used our established POG model [POG1-(CC011xCC001)F1 and POG2-(CC001xCC011)F1] to identify interindividual differences. Results: We found that DVD altered the adult liver transcriptome, primarily downregulating genes controlling liver development, response to injury/infection (detoxification & inflammation), cholesterol biosynthesis, and energy production. In concordance with these transcriptional changes, we found that DVD decreased liver cell membrane-associated lipids (including cholesterol) and pentose phosphate pathway metabolites. Each POG also exhibited distinct responses. POG1 exhibited almost 2X more differentially expressed genes (DEGs) with effects indicative of increased energy utilization. This included upregulation of lipid and amino acid metabolism genes and increased intermediate lipid and amino acid metabolites, increased energy cofactors, and decreased energy substrates. POG2 exhibited broader downregulation of cholesterol biosynthesis genes with a metabolomics profile indicative of decreased energy utilization. Although DVD primarily caused loss of liver DNA methylation for both POGs, only one epimutation was shared, and POG2 had 6.5X more differentially methylated genes. Differential methylation was detected at DEGs regulating developmental processes such as amino acid transport (POG1) and cell growth & differentiation (e.g., Wnt & cadherin signaling, POG2). Conclusions: These findings implicate a novel role for maternal vitamin D in programming essential offspring liver functions that are dysregulated in liver disease. Importantly, impairment of these processes was not rescued by vitamin D treatment at weaning, suggesting these effects require preventative measures. Substantial differences in POG response to DVD demonstrate that the parental genomic context of exposure determines offspring susceptibility.


Assuntos
Colesterol , Metabolismo Energético , Fígado , Deficiência de Vitamina D , Animais , Camundongos , Fígado/metabolismo , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/genética , Colesterol/metabolismo , Colesterol/biossíntese , Feminino , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transcriptoma , Epigênese Genética
14.
Front Physiol ; 15: 1354327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585221

RESUMO

Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C ¼ C and C ¼ OB) and OB-born offspring fed C or OB diets (OB ¼ C and OB ¼ OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.

15.
Psychoneuroendocrinology ; 165: 107044, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657342

RESUMO

BACKGROUND: Prenatal glucocorticoids are one of the most widely proposed prenatal programming mechanisms, yet few studies exist that measure fetal cortisol via neonatal hair. Neonatal hair provides a window into the fetal experience and represents cortisol accumulation in the third trimester of pregnancy. In the current study, we test the links between two types of anxiety over the course of gestation (pregnancy-related anxiety and general anxiety) with neonatal hair cortisol. METHOD: Pregnant individuals (N = 107) and their neonates (59.8% female) participated in the current study. Prenatal pregnancy-related anxiety and general anxiety were measured using the Pregnancy Related Anxiety Scale (PRAS) and the State-Trait Anxiety Inventory (STAI), in each trimester of pregnancy. Hierarchical linear modeling was used to model the intercept and slope of each type of anxiety over gestation. Neonatal hair samples were collected shortly after birth (Median days = 1.17, IQR = 0.75-2.00). RESULTS: Both higher pregnancy-related anxiety and general anxiety at the beginning of pregnancy and a flatter decline of pregnancy-related anxiety over gestation were associated with lower neonatal hair cortisol. After inclusion of gestational age at birth and parity as covariates, pregnancy-related anxiety (intercept: ß = -0.614, p =.012; slope: ß = -0.681, p =.006), but not general anxiety (intercept: ß = -0.389, p =.114; slope: ß = -0.302, p =.217) remained a significant predictor. Further, when both general and pregnancy-related anxiety were entered into the same model, only pregnancy-related anxiety (intercept and slope) were significant predictors of neonatal hair cortisol, indicating an association with pregnancy-related anxiety above and beyond general anxiety. CONCLUSION: Cortisol plays a central role in maturation of fetal organ systems, and at the end of gestation, higher cortisol has beneficial effects such as promoting fetal lung maturation. Further, lower maternal cortisol is linked to less optimal cognitive development and altered brain development. As maternal higher anxiety in early pregnancy and a flatter decrease over time are both associated with lower neonatal hair cortisol, maternal pregnancy-related anxiety could be a target of future intervention efforts.


Assuntos
Ansiedade , Cabelo , Hidrocortisona , Humanos , Feminino , Cabelo/química , Gravidez , Hidrocortisona/análise , Hidrocortisona/metabolismo , Ansiedade/metabolismo , Recém-Nascido , Adulto , Idade Gestacional , Complicações na Gravidez/metabolismo , Masculino , Terceiro Trimestre da Gravidez/metabolismo
16.
Mol Cell Endocrinol ; 588: 112234, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588858

RESUMO

Hyperandrogenic disorders, such as polycystic ovary syndrome, are often associated with metabolic disruptions such as insulin resistance and hyperinsulinemia. Studies in sheep, a precocial model of translational relevance, provide evidence that in utero exposure to excess testosterone during days 30-90 of gestation (the sexually dimorphic window where males naturally experience elevated androgens) programs insulin resistance and hyperinsulinemia in female offspring. Extending earlier findings that adverse effects of testosterone excess are evident in fetal day 90 pancreas, the end of testosterone treatment, the present study provides evidence that transcriptomic and phenotypic effects of in utero testosterone excess on female pancreas persist after cessation of treatment, suggesting lasting organizational changes, and induce a male-like phenotype in female pancreas. These findings demonstrate that the female pancreas is susceptible to programmed masculinization during the sexually dimorphic window of fetal development and shed light on underlying connections between hyperandrogenism and metabolic homeostasis.


Assuntos
Pâncreas , Testosterona , Transcriptoma , Animais , Feminino , Ovinos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Gravidez , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Resistência à Insulina , Hiperandrogenismo/metabolismo , Hiperandrogenismo/genética , Desenvolvimento Fetal/efeitos dos fármacos , Caracteres Sexuais
17.
Metabolites ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535316

RESUMO

Stress-induced fetal programming diminishes ß2 adrenergic tone, which coincides with intrauterine growth restriction (IUGR) and lifelong metabolic dysfunction. We determined if stimulating ß2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the ß2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies. As juveniles, IUGR lambs exhibited systemic inflammation and robust metabolic dysfunction, including greater (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, increased (p < 0.05) intramuscular glycogen, reduced (p < 0.05) circulating IGF-1, hindlimb blood flow, glucose-stimulated insulin secretion, and muscle glucose oxidation. Daily clenbuterol fully recovered (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, hindlimb blood flow, muscle glucose oxidation, and intramuscular glycogen. Glucose-stimulated insulin secretion was partially recovered (p < 0.05) in clenbuterol-treated IUGR lambs, but circulating IGF-1 was not improved. Circulating triglycerides and HDL cholesterol were elevated (p < 0.05) in clenbuterol-treated IUGR lambs, despite being normal in untreated IUGR lambs. We conclude that deficient ß2 adrenergic regulation is a primary mechanism for several components of metabolic dysfunction in IUGR-born offspring and thus represents a potential therapeutic target for improving metabolic outcomes. Moreover, benefits from the ß2 agonist were likely complemented by its suppression of IUGR-associated inflammation.

18.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474810

RESUMO

Metabolic syndrome (MetS) denotes a constellation of risk factors associated with the development of cardiovascular disease, with its roots potentially traced back to early life. Given the pivotal role of oxidative stress and dysbiotic gut microbiota in MetS pathogenesis, comprehending their influence on MetS programming is crucial. Targeting these mechanisms during the early stages of life presents a promising avenue for preventing MetS later in life. This article begins by examining detrimental insults during early life that impact fetal programming, ultimately contributing to MetS in adulthood. Following that, we explore the role of oxidative stress and the dysregulation of gut microbiota in the initiation of MetS programming. The review also consolidates existing evidence on how gut-microbiota-targeted interventions can thwart oxidative-stress-associated MetS programming, encompassing approaches such as probiotics, prebiotics, postbiotics, and the modulation of bacterial metabolites. While animal studies demonstrate the favorable effects of gut-microbiota-targeted therapy in mitigating MetS programming, further clinical investigations are imperative to enhance our understanding of manipulating gut microbiota and oxidative stress for the prevention of MetS.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Síndrome Metabólica/etiologia , Fatores de Risco , Estresse Oxidativo , Prebióticos
19.
Epigenetics ; 19(1): 2318516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38484284

RESUMO

Epigenetic modifications, including DNA methylation, are proposed mechanisms explaining the impact of parental exposures to foetal development and lifelong health. Micronutrients including folate, choline, and vitamin B12 provide methyl groups for the one-carbon metabolism and subsequent DNA methylation processes. Placental DNA methylation changes in response to one-carbon moieties hold potential targets to improve obstetrical care. We conducted a systematic review on the associations between one-carbon metabolism and human placental DNA methylation. We included 22 studies. Findings from clinical studies with minimal ErasmusAGE quality score 5/10 (n = 15) and in vitro studies (n = 3) are summarized for different one-carbon moieties. Next, results are discussed per study approach: (1) global DNA methylation (n = 9), (2) genome-wide analyses (n = 4), and (3) gene specific (n = 14). Generally, one-carbon moieties were not associated with global methylation, although conflicting outcomes were reported specifically for choline. Using genome-wide approaches, few differentially methylated sites associated with S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), or dietary patterns. Most studies taking a gene-specific approach indicated site-specific relationships depending on studied moiety and genomic region, specifically in genes involved in growth and development including LEP, NR3C1, CRH, and PlGF; however, overlap between studies was low. Therefore, we recommend to further investigate the impact of an optimized one-carbon metabolism on DNA methylation and lifelong health.


Assuntos
Metilação de DNA , Placenta , Feminino , Humanos , Gravidez , Placenta/metabolismo , Estudo de Associação Genômica Ampla , Ácido Fólico , S-Adenosilmetionina/metabolismo , Colina/metabolismo , Carbono/metabolismo
20.
Environ Toxicol ; 39(6): 3523-3536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38465474

RESUMO

A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 µg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.


Assuntos
MicroRNAs , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Neoplasias da Próstata , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Animais , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Feminino , Ácidos Ftálicos/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Exposição Materna/efeitos adversos , Próstata/efeitos dos fármacos , Próstata/patologia , Ratos Wistar , Ratos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA