Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Int Med Case Rep J ; 17: 597-602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895178

RESUMO

Introduction: This study presents a rare case of multiple evanescent white dot syndrome (MEWDS) with atypical electrooculogram (EOG) findings, as well as abnormal en-face images of minimum intensity projection (Min-IP) and the en-face inner segment/outer segment-ellipsoid complex. Methods: A 25-year-old female patient presented with painless visual impairment and photopsia in her right eye for a duration of two days. Multimodal imaging was employed including color fundus photography (CFP), fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT), and optical coherence tomography angiography (OCTA), and en-face images of Min-IP and the en-face inner segment/outer segment-ellipsoid complex were performed. Results: In the right eye, multifocal small white spots were observed surrounding the posterior pole and optic disc of retina with the granular appearance of the fovea. FAF displayed of hyperfluorescence. SD-OCT appearance of MEWDS demonstrated primarily disrupted ellipsoid zone (EZ), photoreceptor outer segments, and interdigitation zone (IZ) complex within the fovea. The en-face images of the inner segment/outer segment-ellipsoid complex and Min-IP exhibited hyperreflective spots in the right eye. In the left eye, interestingly, hyperreflective spots were also observed on the en-face image of the inner segment/outer segment-ellipsoid complex. EOG revealed an Arden ratio of 2.5 for the right eye, while the left eye exhibited an Arden ratio of 1.7. Conclusion: The en-face image of the inner segment/outer segment-ellipsoid complex in MEWDS exhibits aberrant features and it is noteworthy that a similar alteration may occur in the fellow eye. Further investigation is required to explore the relationship between MEWDS and EOG. The en-face images of the inner segment/outer segment-ellipsoid complex and Min-IP may help to elucidate the pathogenesis of MEWDS.

2.
Brain Res Bull ; 215: 111017, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914295

RESUMO

Sleep staging plays an important role in the diagnosis and treatment of clinical sleep disorders. The sleep staging standard defines every 30 seconds as a sleep period, which may mean that there exist similar brain activity patterns during the same sleep period. Thus, in this work, we propose a novel time-related synchronization analysis framework named time-related multimodal sleep scoring model (TRMSC) to explore the potential time-related patterns of sleeping. In the proposed TRMSC, the time-related synchronization analysis is first conducted on the single channel electrophysiological signal, i.e., Electroencephalogram (EEG) and Electrooculogram (EOG), to explore the time-related patterns, and the spectral activation features are also extracted by spectrum analysis to obtain the multimodal features. With the extracted multimodal features, the feature fusion and selection strategy is utilized to obtain the optimal feature set and achieve robust sleep staging. To verify the effectiveness of the proposed TRMSC, sleep staging experiments were conducted on the Sleep-EDF dataset, and the experimental results indicate that the proposed TRMSC has achieved better performance than other existing strategies, which proves that the time-related synchronization features can make up for the shortcomings of traditional spectrum-based strategies and achieve a higher classification accuracy. The proposed TRMSC model may be helpful for portable sleep analyzers and provide a new analytical method for clinical sleeping research.


Assuntos
Encéfalo , Eletroencefalografia , Fases do Sono , Humanos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Encéfalo/fisiologia , Eletroculografia/métodos , Masculino , Adulto , Feminino , Polissonografia/métodos
3.
Physiol Meas ; 45(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653318

RESUMO

Objective.Sleep staging based on full polysomnography is the gold standard in the diagnosis of many sleep disorders. It is however costly, complex, and obtrusive due to the use of multiple electrodes. Automatic sleep staging based on single-channel electro-oculography (EOG) is a promising alternative, requiring fewer electrodes which could be self-applied below the hairline. EOG sleep staging algorithms are however yet to be validated in clinical populations with sleep disorders.Approach.We utilized the SOMNIA dataset, comprising 774 recordings from subjects with various sleep disorders, including insomnia, sleep-disordered breathing, hypersomnolence, circadian rhythm disorders, parasomnias, and movement disorders. The recordings were divided into train (574), validation (100), and test (100) groups. We trained a neural network that integrated transformers within a U-Net backbone. This design facilitated learning of arbitrary-distance temporal relationships within and between the EOG and hypnogram.Main results.For 5-class sleep staging, we achieved median accuracies of 85.0% and 85.2% and Cohen's kappas of 0.781 and 0.796 for left and right EOG, respectively. The performance using the right EOG was significantly better than using the left EOG, possibly because in the recommended AASM setup, this electrode is located closer to the scalp. The proposed model is robust to the presence of a variety of sleep disorders, displaying no significant difference in performance for subjects with a certain sleep disorder compared to those without.Significance.The results show that accurate sleep staging using single-channel EOG can be done reliably for subjects with a variety of sleep disorders.


Assuntos
Eletroculografia , Fases do Sono , Transtornos do Sono-Vigília , Humanos , Fases do Sono/fisiologia , Eletroculografia/métodos , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/fisiopatologia , Masculino , Feminino , Adulto , Estudos de Coortes , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Redes Neurais de Computação , Adulto Jovem , Polissonografia
4.
Immunol Allergy Clin North Am ; 44(2): 299-309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575225

RESUMO

Eosinophilic gastrointestinal disorder (EGID) is an umbrella term encompassing a group of chronic, immune-mediated disorders characterized by eosinophil-rich inflammation affecting one or more segments of the gastrointestinal tract. A recent consensus in nomenclature and emerging data made possible through multi-center consortia are beginning to unravel the molecular and cellular underpinnings of EGIDs below the esophagus. These emerging findings are revealing both overarching commonalities related to a food allergen-driven, chronic, Th2-mediated immune response as well as location-specific nuances in the pathophysiology of the collective EGIDs. Altogether, these advances offer promise for improved diagnoses and more efficacious interventional strategies.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Enterite/diagnóstico , Enterite/terapia , Gastrite/diagnóstico , Eosinofilia/diagnóstico , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/terapia
5.
Front Robot AI ; 11: 1326670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440775

RESUMO

Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview. Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years. Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted. Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking. Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.

6.
Front Neuroergon ; 5: 1345507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533517

RESUMO

Introduction: The efficiency and safety of complex high precision human-machine systems such as in aerospace and robotic surgery are closely related to the cognitive readiness, ability to manage workload, and situational awareness of their operators. Accurate assessment of mental workload could help in preventing operator error and allow for pertinent intervention by predicting performance declines that can arise from either work overload or under stimulation. Neuroergonomic approaches based on measures of human body and brain activity collectively can provide sensitive and reliable assessment of human mental workload in complex training and work environments. Methods: In this study, we developed a new six-cognitive-domain task protocol, coupling it with six biomedical monitoring modalities to concurrently capture performance and cognitive workload correlates across a longitudinal multi-day investigation. Utilizing two distinct modalities for each aspect of cardiac activity (ECG and PPG), ocular activity (EOG and eye-tracking), and brain activity (EEG and fNIRS), 23 participants engaged in four sessions over 4 weeks, performing tasks associated with working memory, vigilance, risk assessment, shifting attention, situation awareness, and inhibitory control. Results: The results revealed varying levels of sensitivity to workload within each modality. While certain measures exhibited consistency across tasks, neuroimaging modalities, in particular, unveiled meaningful differences between task conditions and cognitive domains. Discussion: This is the first comprehensive comparison of these six brain-body measures across multiple days and cognitive domains. The findings underscore the potential of wearable brain and body sensing methods for evaluating mental workload. Such comprehensive neuroergonomic assessment can inform development of next generation neuroadaptive interfaces and training approaches for more efficient human-machine interaction and operator skill acquisition.

7.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339758

RESUMO

Assessing drivers' mental workload is crucial for reducing road accidents. This study examined drivers' mental workload in a simulated auditory-based dual-task driving scenario, with driving tasks as the main task, and auditory-based N-back tasks as the secondary task. A total of three levels of mental workload (i.e., low, medium, high) were manipulated by varying the difficulty levels of the secondary task (i.e., no presence of secondary task, 1-back, 2-back). Multimodal measures, including a set of subjective measures, physiological measures, and behavioral performance measures, were collected during the experiment. The results showed that an increase in task difficulty led to increased subjective ratings of mental workload and a decrease in task performance for the secondary N-back tasks. Significant differences were observed across the different levels of mental workload in multimodal physiological measures, such as delta waves in EEG signals, fixation distance in eye movement signals, time- and frequency-domain measures in ECG signals, and skin conductance in EDA signals. In addition, four driving performance measures related to vehicle velocity and the deviation of pedal input and vehicle position also showed sensitivity to the changes in drivers' mental workload. The findings from this study can contribute to a comprehensive understanding of effective measures for mental workload assessment in driving scenarios and to the development of smart driving systems for the accurate recognition of drivers' mental states.


Assuntos
Atenção , Condução de Veículo , Atenção/fisiologia , Carga de Trabalho , Análise e Desempenho de Tarefas , Movimentos Oculares , Acidentes de Trânsito
8.
Med Biol Eng Comput ; 62(6): 1781-1793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374416

RESUMO

In recent years, fatigue driving has become the main cause of traffic accidents, leading to increased attention towards fatigue detection systems. However, the pooling and strided convolutional operations in fatigue detection algorithm based on traditional deep learning methods may led to the loss of some useful information. This paper proposed a novel τ -shaped convolutional network ( τ Net ) aiming to address this issue. Unlike traditional network structures, τ Net incorporates the operations of upsampling features and concatenating high- and low-level features, enabling full utilization of useful information. Moreover, considering that the fatigue state is a mental state involving temporal evolution, we proposed the novel long short-term memory (LSTM)- τ -shaped convolutional network (LSTM- τ Net ), a parallel structure composed of LSTM and τ Net for fatigue detection, where τ Net extracts time-invariant features with location information, and LSTM extracts long temporal dependencies. We compared LSTM- τ Net with six competing methods based on two datasets. Results showed that the proposed algorithm achieved higher classification accuracy than the other methods, with 94.25% on EEG data (binary classification) and 82.19% on EOG data (triple classification). Additionally, the proposed algorithm exhibits low computational cost, good training stability, and robustness against insufficient training. Therefore, it is promising for further implementation of fatigue online detection systems.


Assuntos
Algoritmos , Aprendizado Profundo , Eletroencefalografia , Fadiga , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Fadiga/diagnóstico , Fadiga/fisiopatologia , Processamento de Sinais Assistido por Computador , Memória de Curto Prazo/fisiologia
9.
Gen Comp Endocrinol ; 350: 114471, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373463

RESUMO

Although well established that several fishes including goldfish in the suborder Cypinoidei within the family Cypriniformes use the maturation-inducing steroid 17,20ß-dihydroxy-pregn-4-ene-3-one (17,20ßP) and its metabolites as a priming pheromone which they detect with sensitivity and specificity, it is unclear whether and how other Cypriniformes might have evolved to do so. This study examined this question in the family Xenocyprididae. Using electro-olfactogram recording we tested the olfactory sensitivity of silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) to a range of 213 steroids in 21 mixtures at 10-9M. While silver carp detected 6 of 21 mixtures, bighead carp detected 5 (p< 0.05). Silver carp were sensitive to 13 21-carbon steroids in these mixtures including 17,20ßP while bighead carp detected 9, including 8 detected by silver carp. This assortment of steroids overlapped that detected by goldfish (family Cyprinidae) but no non-Cyprinoid, suggesting common evolutionary origin and function with differences characteristic of species-specificity.


Assuntos
Carpas , Feromônios , Animais , Carpa Dourada
10.
Behav Brain Res ; 464: 114898, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38382711

RESUMO

Over the past few years, fatigue driving has emerged as one of the main causes of traffic accidents, necessitating the development of driver fatigue detection systems. However, many existing methods involves tedious manual parameter tunings, a process that is both time-consuming and results in task-specific models. On the other hand, most of the researches on fatigue recognition are based on class-balanced and sufficient data, and effectively "mine" meaningful information from class-imbalanced and insufficient data for fatigue recognition is still a challenge. In this paper, we proposed two novel models, the attention-based residual adaptive multiscale fully convolutional network-long short term memory network (ARMFCN-LSTM), and the Generative ARMFCN-LSTM (GARMFCN-LSTM) aiming to address this issue. ARMFCN-LSTM excels at automatically extracting multiscale representations through adaptive multiscale temporal convolutions, while capturing temporal dependency features through LSTM. GARMFCN-LSTM integrates Wasserstein GAN with gradient penalty (WGAN-GP) into ARMFCN-LSTM to improve driver fatigue detection performance by alleviating data scarcity and addressing class imbalances. Experimental results show that ARMFCN-LSTM achieves the highest classification accuracy of 95.84% in driver fatigue detection on the class-balanced EEG dataset (binary classification), and GARMFCN-LSTM attained an improved classification accuracy of 84.70% on the class-imbalanced EOG dataset (triple classification), surpassing the competing methods. Therefore, the proposed models are promising for further implementations in online driver fatigue detection systems.

11.
Ophthalmic Genet ; 45(1): 38-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908234

RESUMO

BACKGROUND: Pathogenic variants in BEST1 can cause autosomal dominant or autosomal recessive dystrophy, typically associated with distinct retinal phenotypes. In heterozygous cases, the disorder is commonly characterized by yellow sub-macular lesions in the early stages, known as Best vitelliform macular dystrophy (BVMD). Biallelic variants usually cause a more severe phenotype including diffuse retinal pigment epithelial irregularity and widespread generalized progressive retinopathy, known as autosomal recessive bestrophinopathy (ARB). This study describes three cases with clinical changes consistent with BVMD, however, unusually associated with autosomal recessive inheritance. MATERIALS AND METHODS: Detailed ophthalmic workup included comprehensive ophthalmologic examination, multimodal retinal imaging, full-field and pattern electroretinography (ERG; PERG), and electrooculogram (EOG). Genetic analysis of probands and segregation testing and fundus examination of proband relatives was performed where possible. RESULTS: Three unrelated cases presented with a clinical phenotype typical for BVMD and were found to have biallelic disease-causing variants in BEST1. PERG P50 and ERG were normal in all cases. The EOG was subnormal (probands 1 and 3) or normal/borderline (proband 2). Probands 1 and 2 were homozygous for the BEST1 missense variant c.139C>T, p.Arg47Cys, while proband 3 was homozygous for a deletion, c.536_538delACA, p.Asn179del. The parents of proband 1 were phenotypically normal. Parents of proband 1 and 2 were heterozygous for the same missense variant. CONCLUSIONS: Individuals with biallelic variants in BEST1 can present with a phenotype indistinguishable from BVMD. The same clinical phenotype may not be evident in those harboring the same variants in the heterozygous state. This has implications for genetic counselling and prognosticationA.


Assuntos
Distrofias Retinianas , Distrofia Macular Viteliforme , Humanos , Distrofia Macular Viteliforme/diagnóstico , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/patologia , Antagonistas de Receptores de Angiotensina , Canais de Cloreto/genética , Proteínas do Olho/genética , Linhagem , Análise Mutacional de DNA , Inibidores da Enzima Conversora de Angiotensina , Bestrofinas/genética , Fenótipo , Mutação , Tomografia de Coerência Óptica
12.
Artigo em Inglês | MEDLINE | ID: mdl-38088999

RESUMO

Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson's disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. OBJECTIVE: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. METHODS AND PROCEDURES: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. RESULTS: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from -50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. CONCLUSION: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson's disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.


Assuntos
Transtorno do Espectro Autista , Doença de Parkinson , Humanos , Eletroculografia/métodos , Transtorno do Espectro Autista/diagnóstico , Doença de Parkinson/diagnóstico , Movimentos Oculares , Eletrodos
13.
Sensors (Basel) ; 23(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139573

RESUMO

Skin-based wearable devices have gained significant attention due to advancements in soft materials and thin-film technologies. Nevertheless, traditional wearable electronics often entail expensive and intricate manufacturing processes and rely on metal-based substrates that are susceptible to corrosion and lack flexibility. In response to these challenges, this paper has emerged with an alternative substrate for wearable electrodes due to its cost-effectiveness and scalability in manufacturing. Paper-based electrodes offer an attractive solution with their inherent properties of high breathability, flexibility, biocompatibility, and tunability. In this study, we introduce carbon nanotube-based paper composites (CPC) electrodes designed for the continuous detection of biopotential signals, such as electrooculography (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). To prevent direct skin contact with carbon nanotubes, we apply various packaging materials, including polydimethylsiloxane (PDMS), Eco-flex, polyimide (PI), and polyurethane (PU). We conduct a comparative analysis of their signal-to-noise ratios in comparison to conventional gel electrodes. Our system demonstrates real-time biopotential monitoring for continuous health tracking, utilizing CPC in conjunction with a portable data acquisition system. The collected data are analyzed to provide accurate heart rates, respiratory rates, and heart rate variability metrics. Additionally, we explore the feasibility using CPC for sleep monitoring by collecting EEG signals.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Pele , Eletrodos , Sono , Eletrocardiografia
14.
Comput Biol Med ; 167: 107590, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897962

RESUMO

A large number of traffic accidents were caused by drowsiness while driving. In-vehicle alert system based on physiological signals was one of the most promising solutions to monitor driving fatigue. However, different physiological modalities can be used, and many relative studies compared different modalities without considering the implementation feasibility of portable or wearable devices. Moreover, evaluations of each modality in previous studies were based on inconsistent choices of fatigue label and signal features, making it hard to compare the results of different studies. Therefore, the modality comparison and fusion for continuous drowsiness estimation while driving was still unclear. This work sought to comprehensively compare widely-used physiological modalities, including forehead electroencephalogram (EEG), electrooculogram (EOG), R-R intervals (RRI) and breath, in a hardware setting feasible for portable or wearable devices to monitor driving fatigue. Moreover, a more general conclusion on modality comparison and fusion was reached based on the regression of features or their combinations and the awake-to-drowsy transition. Finally, the feature subset of fused modalities was produced by feature selection method, to select the optimal feature combination and reduce computation consumption. Considering practical feasibility, the most effective combination with the highest correlation coefficient was using forehead EEG or EOG, along with RRI and RRI-derived breath. If more comfort and convenience was required, the combination of RRI and RRI-derived breath was also promising.


Assuntos
Eletroencefalografia , Vigília , Humanos , Eletroencefalografia/métodos , Acidentes de Trânsito/prevenção & controle , Eletroculografia/métodos , Fadiga
15.
Biomimetics (Basel) ; 8(4)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37622983

RESUMO

In recent years, limited works on EOG (electrooculography)-based biometric authentication systems have been carried out with eye movements or eye blinking activities in the current literature. EOGs have permanent and unique traits that can separate one individual from another. In this work, we have investigated FSST (Fourier Synchrosqueezing Transform)-ICA (Independent Component Analysis)-EMD (Empirical Mode Decomposition) robust framework-based EOG-biometric authentication (one-versus-others verification) performances using ensembled RNN (Recurrent Neural Network) deep models voluntary eye blinkings movements. FSST is implemented to provide accurate and dense temporal-spatial properties of EOGs on the state-of-the-art time-frequency matrix. ICA is a powerful statistical tool to decompose multiple recording electrodes. Finally, EMD is deployed to isolate EOG signals from the EEGs collected from the scalp. As our best knowledge, this is the first research attempt to explore the success of the FSST-ICA-EMD framework on EOG-biometric authentication generated via voluntary eye blinking activities in the limited EOG-related biometric literature. According to the promising results, improved and high recognition accuracies (ACC/Accuracy: ≥99.99% and AUC/Area under the Curve: 0.99) have been achieved in addition to the high TAR (true acceptance rate) scores (≥98%) and low FAR (false acceptance rate) scores (≤3.33%) in seven individuals. On the other hand, authentication and monitoring for online users/students are becoming essential and important tasks due to the increase of the digital world (e-learning, e-banking, or e-government systems) and the COVID-19 pandemic. Especially in order to ensure reliable access, a highly scalable and affordable approach for authenticating the examinee without cheating or monitoring high-data-size video streaming is required in e-learning platforms and online education strategies. Hence, this work may present an approach that offers a sustainable, continuous, and reliable EOG-biometric authentication of digital applications, including e-learning platforms for users/students.

16.
J Neurosci Methods ; 397: 109939, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579794

RESUMO

BACKGROUND: Slow eye movements (SEMs), which occurs during eye-closed periods with high time coverage rate during simulated driving process, indicate drivers' sleep onset. NEW METHOD: For the multi-scale characteristics of slow eye movement waveforms, we propose a multi-scale one-dimensional convolutional neural network (MS-1D-CNN) for classification. The MS-1D-CNN performs multiple down-sampling processing branches on the original signal and uses the local convolutional layer to extract the features for each branch. RESULTS: We evaluate the classification performance of this model on ten subjects' standard train-test datasets and continuous test datasets by means of subject-subject evaluation and leave-one-subject-out cross validation, respectively. For the standard train-test datasets, the overall average classification accuracies are about 99.1% and 98.6%, in subject-subject evaluation and leave-one-subject-out cross validation, respectively. For the continuous test datasets, the overall average values of accuracy, precision, recall and F1-score are 99.3%, 98.9%, 99.5% and 99.1% in subject-subject evaluation, are 99.2%, 98.8%, 99.3% and 99.0% in leave-one-subject-out cross validation. COMPARISON WITH EXISTING METHOD: Results of the standard train-test datasets show that the overall average classification accuracy of the MS-1D-CNN is quite higher than the baseline method based on hand-designed features by 3.5% and 3.5%, in subject-subject evaluation and leave-one-subject-out cross validation, respectively. CONCLUSIONS: These results suggest that multi-scale transformation in the MS-1D-CNN model can enhance the representation ability of features, thereby improving classification accuracy. Experimental results verify the good performance of the MS-1D-CNN model, even in leave-one-subject-out cross validation, thus promoting the application of SEMs detection technology for driver sleepiness detection.


Assuntos
Movimentos Oculares , Sonolência , Humanos , Rememoração Mental , Redes Neurais de Computação
17.
Sensors (Basel) ; 23(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37430865

RESUMO

Sleep stage detection from polysomnography (PSG) recordings is a widely used method of monitoring sleep quality. Despite significant progress in the development of machine-learning (ML)-based and deep-learning (DL)-based automatic sleep stage detection schemes focusing on single-channel PSG data, such as single-channel electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), developing a standard model is still an active subject of research. Often, the use of a single source of information suffers from data inefficiency and data-skewed problems. Instead, a multi-channel input-based classifier can mitigate the aforementioned challenges and achieve better performance. However, it requires extensive computational resources to train the model, and, hence, a tradeoff between performance and computational resources cannot be ignored. In this article, we aim to introduce a multi-channel, more specifically a four-channel, convolutional bidirectional long short-term memory (Bi-LSTM) network that can effectively exploit spatiotemporal features of data collected from multiple channels of the PSG recording (e.g., EEG Fpz-Cz, EEG Pz-Oz, EOG, and EMG) for automatic sleep stage detection. First, a dual-channel convolutional Bi-LSTM network module has been designed and pre-trained utilizing data from every two distinct channels of the PSG recording. Subsequently, we have leveraged the concept of transfer learning circuitously and have fused two dual-channel convolutional Bi-LSTM network modules to detect sleep stages. In the dual-channel convolutional Bi-LSTM module, a two-layer convolutional neural network has been utilized to extract spatial features from two channels of the PSG recordings. These extracted spatial features are subsequently coupled and given as input at every level of the Bi-LSTM network to extract and learn rich temporal correlated features. Both Sleep EDF-20 and Sleep EDF-78 (expanded version of Sleep EDF-20) datasets are used in this study to evaluate the result. The model that includes an EEG Fpz-Cz + EOG module and an EEG Fpz-Cz + EMG module can classify sleep stage with the highest value of accuracy (ACC), Kappa (Kp), and F1 score (e.g., 91.44%, 0.89, and 88.69%, respectively) on the Sleep EDF-20 dataset. On the other hand, the model consisting of an EEG Fpz-Cz + EMG module and an EEG Pz-Oz + EOG module shows the best performance (e.g., the value of ACC, Kp, and F1 score are 90.21%, 0.86, and 87.02%, respectively) compared to other combinations for the Sleep EDF-78 dataset. In addition, a comparative study with respect to other existing literature has been provided and discussed in order to exhibit the efficacy of our proposed model.


Assuntos
Fases do Sono , Sono , Polissonografia , Eletroencefalografia , Eletromiografia
18.
Front Bioeng Biotechnol ; 11: 1190211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456720

RESUMO

The biosensor is an instrument that converts the concentration of biomarkers into electrical signals for detection. Biosensing technology is non-invasive, lightweight, automated, and biocompatible in nature. These features have significantly advanced medical diagnosis, particularly in the diagnosis of mental disorder in recent years. The traditional method of diagnosing mental disorders is time-intensive, expensive, and subject to individual interpretation. It involves a combination of the clinical experience by the psychiatrist and the physical symptoms and self-reported scales provided by the patient. Biosensors on the other hand can objectively and continually detect disease states by monitoring abnormal data in biomarkers. Hence, this paper reviews the application of biosensors in the detection of mental diseases, and the diagnostic methods are divided into five sub-themes of biosensors based on vision, EEG signal, EOG signal, and multi-signal. A prospective application in clinical diagnosis is also discussed.

19.
Epileptic Disord ; 25(2): 131-141, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37283354

RESUMO

OBJECTIVE: To describe blinking as the only manifestation of seizures from isolated focal and generalized cortical spikes and investigate the relationship between blinks and epileptic discharges. METHODS: We measured the latency from the onset of spikes to the onset of blinks in two patients using electroencephalogram (EEG) and an electrooculogram (EOG), and calculated the median latency in both cases. We analyzed the latency from spike onset to the onset of additional specific eye movements, seen only in the second case. To determine the frequency of spontaneous blinks (not triggered by spikes), we defined a "control point" at 45 s following a random spike for the first case. We tested for statistically significant associations between latencies of blinks (Case 1) as well as between latencies of blinks and specific eye movements (Case 2). RESULTS: A total of 174 generalized spike-waves followed by a blink were analyzed in the first patient. Approximately 61% of the blinks occurred within 150-450 ms after the onset of the spike. Median latency for blinks following a spike was 294 ms compared to 541 ms for control blinks (p = .02). For the second patient, a total of 160 eye movements following a right occipito-parietal spike were analyzed. The median spike-blink latency in the second case was 497 milliseconds. Median latencies of spike onset to contralateral oblique eye movements with blink and left lateral eye movements were 648 and 655 milliseconds, respectively. CONCLUSIONS: Our study shows that isolated cortical spikes can induce epileptic seizures consisting exclusively of blinks. These findings emphasize the importance of careful EEG and EOG analysis to determine blinking as the only ictal phenomenon. We additionally describe a new technique to prove the temporal relationship between cortical discharges and a specific movement when, in addition to the movements triggered by a spike, the same movement is also spontaneously performed by the patient (in this case, blinking).


Assuntos
Piscadela , Epilepsia , Humanos , Movimentos Sacádicos , Pálpebras , Movimentos Oculares , Convulsões
20.
Comput Biol Med ; 163: 107127, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311382

RESUMO

Nowadays, many sleep staging algorithms have not been widely used in practical situations due to the lack of persuasiveness of generalization outside the given datasets. Thus, to improve generalization, we select seven highly heterogeneous datasets covering 9970 records with over 20k hours among 7226 subjects spanning 950 days for training, validation, and evaluation. In this paper, we propose an automatic sleep staging architecture called TinyUStaging using single-lead EEG and EOG. The TinyUStaging is a lightweight U-Net with multiple attention modules to perform adaptive recalibration of the features, including Channel and Spatial Joint Attention (CSJA) block and Squeeze and Excitation (SE) block. Noteworthily, to address the class imbalance problem, we design sampling strategies with probability compensation and propose a class-aware Sparse Weighted Dice and Focal (SWDF) loss function to improve the recognition rate for minority classes (N1) and hard-to-classify samples (N3) especially for OSA patients. Additionally, two hold-out sets containing healthy and sleep-disordered subjects are considered to verify the generalization. Facing the background of large-scale imbalanced heterogeneous data, we perform subject-wise 5-fold cross-validation on each dataset, and the results demonstrate that our model outperforms many methods, especially in N1, achieving an average overall accuracy, macro F1-score (MF1), and kappa of 84.62%, 79.6%, and 0.764 on heterogeneous datasets under optimal partitioning, providing a solid foundation for out-of-hospital sleep monitoring. Moreover, the overall standard deviation of MF1 under different folds remains within 0.175, indicating that the model is relatively stable.


Assuntos
Eletroencefalografia , Fases do Sono , Humanos , Eletroculografia/métodos , Polissonografia/métodos , Eletroencefalografia/métodos , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA