Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pharmacol Res Perspect ; 6(6): e00441, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455960

RESUMO

The up-regulated expression of E-type prostanoid (EP) 4 receptors has been implicated in carcinogenesis; however, the expression of EP4 receptors has also been reported to be weaker in tumor tissues than in normal tissues. Indeed, EP4 receptors have been suggested to play a role in the maintenance of colorectal homeostasis. This study aimed to examine the underlying mechanisms/reasons for why inconsistent findings have been reported regarding EP4 receptor expression levels in homeostasis and carcinogenesis by focusing on cellular densities. Thus, the human colon cancer HCA-7 cells, which retain some functional features of normal epithelia, and luciferase reporter genes containing wild-type or mutated EP4 receptor promoters were used for elucidating the cellular density-dependent mechanisms about the regulation of EP4 receptor expression. In silico analysis was also utilized for confirming the relevance of the findings with respect to colon cancer development. We here demonstrated that the expression of EP4 receptors was up-regulated by c-Myc by binding to Sp-1 under low cellular density conditions, but was down-regulated under high cellular density conditions via the increase in the expression levels of HIF-1α protein, which may pull out c-Myc and Sp-1 from DNA-binding. The tightly regulated EP4 receptor expression mechanism may be a critical system for maintaining homeostasis in normal colorectal epithelial cells. Therefore, once the system is altered, possibly due to the transient overexpression of EP4 receptors, it may result in aberrant cellular proliferation and transformation to cancerous phenotypes. However, at the point, EP4 receptors themselves and their mediated homeostasis would be no longer required.


Assuntos
Neoplasias do Colo/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Carcinogênese/genética , Contagem de Células , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Biologia Computacional , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima
2.
Int J Mol Sci ; 18(6)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587064

RESUMO

Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC). The expression of matrix metalloproteinases (MMPs) has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 µM) promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, ß-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the ß-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo
3.
Physiol Rep ; 5(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28438981

RESUMO

Gamma-aminobutyric acid (GABA) depolarizes dorsal root ganglia (DRG) primary afferent neurons through activation of Cl- permeable GABAA receptors but the physiologic role of GABAA receptors in the peripheral terminals of DRG neurons remains unclear. In this study, we investigated the role of peripheral GABAA receptors in nociception using a mouse model of acute inflammation. In vivo, peripheral administration of the selective GABAA receptor agonist muscimol evoked spontaneous licking behavior, as well as spinal wide dynamic range (WDR) neuron firing, after pre-conditioning with formalin but had no effect in saline-treated mice. GABAA receptor-mediated pain behavior after acute formalin treatment was abolished by the GABAA receptor blocker picrotoxin and cyclooxygenase inhibitor indomethacin. In addition, treatment with prostaglandin E2 (PGE2) was sufficient to reveal muscimol-induced licking behavior. In vitro, GABA induced sub-threshold depolarization in DRG neurons through GABAA receptor activation. Both formalin and PGE2 potentiated GABA-induced Ca2+ transients and membrane depolarization in capsaicin-sensitive nociceptive DRG neurons; these effects were blocked by the prostaglandin E2 receptor 4 (EP4) antagonist AH23848 (10 µmol/L). Furthermore, potentiation of GABA responses by PGE2 was prevented by the selective Nav1.8 antagonist A887826 (100 nmol/L). Although the function of the Na+-K+-2Cl- co-transporter NKCC1 was required to maintain the Cl- ion gradient in isolated DRG neurons, NKCC1 was not required for GABAA receptor-mediated nociceptive behavior after acute inflammation. Taken together, these results demonstrate that GABAA receptors may contribute to the excitation of peripheral sensory neurons in inflammation through a combined effect involving PGE2-EP4 signaling and Na+ channel sensitization.


Assuntos
Neurônios GABAérgicos/metabolismo , Nociceptividade , Receptores de GABA-A/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células Receptoras Sensoriais/metabolismo , Potenciais de Ação , Animais , Sinalização do Cálcio , Células Cultivadas , Dinoprostona/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
4.
BMC Cancer ; 17(1): 11, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056899

RESUMO

BACKGROUND: Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role. METHODS: Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice. RESULTS: RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo. DISCUSSION/CONCLUSIONS: These results demonstrate the roles of tumor as well as host-derived PGE2 in inducing lymphangiogenesis, at least in part, by activating EP4 and VEGFR-3 on LEC. EP4 being a common target on both tumor and host cells contributing to tumor-associated lymphangiogenesis reaffirms the therapeutic value of EP4 antagonists in the intervention of lymphatic metastasis in breast cancer.


Assuntos
Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Neoplasias Mamárias Experimentais/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Nus , Ratos , Reação em Cadeia da Polimerase em Tempo Real
5.
Eur J Pharmacol ; 768: 149-59, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26518053

RESUMO

Approximately two decades have passed since E-type prostanoid 4 (EP4) receptors were cloned, and the signaling pathways mediated by these receptors have since been implicated in cancer development through the alliance of Gαi-protein/phosphatidylinositol 3-kinase (PI3K)/extracellular signal-regulated kinases (ERKs) activation. Although prostanoid EP4 receptors were initially identified as Gαs-coupled receptors, the specific/distinctive role(s) of prostanoid EP4 receptor-induced cAMP/protein kinase A (PKA) pathways in cancer development have not yet been elucidated in detail. We previously reported using HCA-7 human colon cancer cells that prostaglandin E2 (PGE2)-stimulated prostanoid EP4 receptors induced cyclooxygenase-2 (COX-2) as an initiating event in development of colon cancer. Moreover, this induction of COX-2 was mediated by transactivation of epidermal growth factor (EGF) receptors. However, direct activation of EGF receptors by EGF also induced similar amounts of COX-2 in this cell line. Thus, the emergence of unique role(s) for prostanoid EP4 receptors is expected by clarifying the different signaling mechanisms between PGE2-stimulated prostanoid EP4 receptors and EGF-stimulated EGF receptors to induce COX-2 and produce PGE2. We here demonstrated that prostanoid EP4 receptor activation by PGE2 in HCA-7 cells led to PKA-dependent re-activation of ERKs, which resulted in prolonged de novo synthesis of PGE2. Although EGF-stimulated EGF receptors in cells also induced COX-2 and the de novo synthesis of PGE2, the activation of this pathway was transient and not mediated by PKA. Therefore, the novel mechanism underlying prolonged de novo synthesis of PGE2 has provided an insight into the importance of prostanoid EP4 receptor-mediated Gαs-protein/cAMP/PKA pathway in development of colon cancer.


Assuntos
Neoplasias do Colo/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/biossíntese , Dinoprostona/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Androstadienos/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ciclo-Oxigenase 2/biossíntese , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Isoquinolinas/farmacologia , Fosforilação/efeitos dos fármacos , Sulfonamidas/farmacologia , Fatores de Tempo , Wortmanina
6.
Pharmacol Res ; 90: 76-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461458

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) is a regulator of gastrointestinal motility that might be involved in impaired motor function associated to gut inflammation. The aim of the present work is to pharmacologically characterize responses to exogenous and endogenous PGE2 in the mouse colon targeting EP2 and EP4 receptors. METHODS: Wild type (WT) and EP2 receptor knockout (EP2-KO) mice were used to characterize PGE2 and butaprost (EP2 receptor agonist) effects on smooth muscle resting membrane potential and myogenic contractility in circularly oriented colonic preparations. RESULTS: In WT animals, PGE2 and butaprost concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. Combination of both EP2 (PF-04418948 0.1µM) and EP4 receptor antagonists (L-161,982 10µM) was needed to block both electrical and mechanical PGE2 responses. Butaprost inhibitory responses (both electrical and mechanical) were totally abolished by PF-04418948 0.1µM. In EP2-KO mice, PGE2 (but not butaprost) concentration-dependently inhibited spontaneous contractions and hyperpolarized smooth muscle cells. In EP2-KO mice, PGE2 inhibition of spontaneous contractility and hyperpolarization was fully antagonized by L-161,982 10µM. In WT animals, EP2 and EP4 receptor antagonists caused a smooth muscle depolarization and an increase in spontaneous mechanical activity. CONCLUSIONS: PGE2 responses in murine circular colonic layer are mediated by post-junctional EP2 and EP4 receptors. PF-04418948 and L-161,982 are selective EP2 and EP4 receptor antagonists that inhibit PGE2 responses. These antagonists might be useful pharmacological tools to limit prostaglandin effects associated to dismotility in gut inflammatory processes.


Assuntos
Colo/fisiologia , Dinoprostona/fisiologia , Receptores de Prostaglandina E Subtipo EP2/fisiologia , Receptores de Prostaglandina E Subtipo EP4/fisiologia , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Animais , Azetidinas/farmacologia , Colo/efeitos dos fármacos , Dinoprostona/farmacologia , Feminino , Técnicas In Vitro , Masculino , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Tiofenos/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA