Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mikrochim Acta ; 191(9): 510, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103665

RESUMO

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.


Assuntos
Aptâmeros de Nucleotídeos , Cocaína , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Detecção do Abuso de Substâncias , Cocaína/urina , Cocaína/análise , Cocaína/sangue , Aptâmeros de Nucleotídeos/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Detecção do Abuso de Substâncias/métodos , Técnicas Biossensoriais/métodos , Saliva/química , Eletrodos , Condução de Veículo , Temperatura Baixa
2.
Biotechnol Bioeng ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956978

RESUMO

6-Aminocaproic acid (6ACA) and 1,6-hexamethylenediamine (HMDA) are key precursors for nylon synthesis, and both are produced using petroleum-based chemical processes. However, the utilization of bio-based raw materials for biological production of monomers is crucial for nylon industry. In this study, we demonstrated that metabolic engineering of Escherichia coli and selected mutations of α-keto acid decarboxylase successfully synthesized 6ACA and HMDA. An artificial iterative cycle from l-lysine to chain-extended α-ketoacids was introduced into Escherichia coli BL21 (DE3). Then, the extended α-ketoacids were decarboxylated and oxidized for 6ACA production. Overexpression of catalase (KatE) combined with the site-directed mutations of α-isopropylmalate synthase (LeuA) contributed synergistic enhancement effect on synthesis of 6ACA, resulting in a 1.3-fold increase in 6ACA titer. Selected mutations in α-keto acid decarboxylase (KivD) improved its specificity and 170.00 ± 5.57 mg/L of 6ACA with a yield of 0.13 mol/mol (6ACA/ l-lysine hydrochloride) was achieved by shake flask cultivation of the engineered strain with the KivD# (F381Y/V461I). Meanwhile, the engineered E. coli could accumulate 84.67 ± 4.04 mg/L of HMDA with a yield of 0.08 mol/mol (HMDA/ l-lysine hydrochloride) by replacing aldehyde dehydrogenase with bi-aminotransferases. This achievement marks a significant advancement in the biological synthesis of 6-carbon compounds, since the biosynthetic pathways of HMDA are rarely identified.

3.
ACS Appl Mater Interfaces ; 16(22): 29003-29015, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788155

RESUMO

Navigating more effective methods to enhance the photon utilization of photodetectors poses a significant challenge. This study initially investigates the impact of morphological alterations in 2H-MoS2 on photodetector (PD) performance. The results reveal that compared to layered MoS2 (MoS2 NLs), MoS2 nanotubes (MoS2 NTs) impart a cavity enhancement effect through multiple light reflections. This structural feature significantly enhances the photodetection performance of the MoS2-based PDs. We further employ the heterojunction strategy to construct Y-TiOPc NPs:MoS2 NTs, utilizing Y-TiOPc NPs (Y-type titanylphthalocyanine) as the vis-NIR photosensitizer and MoS2 NTs as the photon absorption enhancer. This approach not only addresses the weak absorption of MoS2 NTs in the near-infrared region but also enhances carrier generation, separation, and transport efficiency. Additionally, the band bending phenomenon induced by trapped-electrons at the interface between ITO and the photoactive layer significantly enhances the hole tunneling injection capability from the external circuit. By leveraging the synergistic effects of the aforementioned strategies, the PD based on Y-TiOPc NPs:MoS2 NTs (Y:MT-PD) exhibits superior photodetection performance in the wavelength range of 365-940 nm compared to MoS2 NLs-based PD and MoS2 NTs-based PD. Particularly noteworthy are the peak values of key metrics for Y:MT-PD, such as EQE, R, and D* that are 4947.6%, 20588 mA/W, and 1.94 × 1012 Jones, respectively. The multiperiod time-resolved photocurrent response curves of Y:MT-PD also surpass those of the other two PDs, displaying rapid, stable, and reproducible responses across all wavelengths. This study provides valuable insights for the further development of photoactive materials with a high photon utilization efficiency.

4.
Small ; 20(7): e2307102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806750

RESUMO

The proton-coupled electron transfer(PCET) reaction plays a crucial role in the chemical transformation process andhas become one of the most concerned elementary reactions. However, the complex kinetics of PCET reaction, which requires the simultaneous transfer of protons and electrons, leads to the dilemma that thermodynamics and kinetics cannot bebalanced and restricts its further development. In this, an interface micro-electric field (IMEF) basedon Fe─N4 in FeMOFs (Fe-Based Metal-Organic Frameworks) glass is designed tosynchronize proton/electron interface behavior for the first time to realizeefficient PCET reaction and optimize reaction thermodynamics and kinetics. The IMEF facilitates the separation of photogenerated electrons and holes, and accelerates Fe(III)/Fe(II) cycle. Driven by near-surface electric field force, the protons near surfacemigrate to Fe sites and participate in Fe(IV)═O formation and reaction, lowering the reaction energy barrier. Based on the interface regulation ofIMEF, a high-efficiency PCET reaction is realized, and kinetic reactionrate constant of photocatalytic oxidation of emerging contaminants is increasedby 3.7 times. This study highlights a strategy for IMEFs to modulate PEC Treactions for a wide range of potential applications, including environmental and ecological applications.

5.
Physiol Mol Biol Plants ; 29(9): 1225-1238, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38024954

RESUMO

Photosynthesis, as one of the most important chemical reactions, has powered our planet for over four billion years on a massive scale. This review summarizes and highlights the major contributions of Govindjee from fundamentals to applications in photosynthesis. His research included primary photochemistry measurements, in the picosecond time scale, in both Photosystem I and II and electron transport leading to NADP reduction, using two light reactions. He was the first to suggest the existence of P680, the reaction center of PSII, and to prove that it was not an artefact of Chlorophyll a fluorescence. For most photobiologists, Govindjee is best known for successfully exploiting Chlorophyll a fluorescence to understand the various steps in photosynthesis as well as to predict plant productivity. His contribution in resolving the controversy on minimum number of quanta in favor of 8-12 vs 3-4, needed for the evolution of one molecule of oxygen, is a milestone in the area of photosynthesis research. Furthermore, together with Don DeVault, he is the first to provide the correct theory of thermoluminescence in photosynthetic systems. His research productivity is very high: ~ 600 published articles and total citations above 27,000 with an h-index of 82. He is a recipient of numerous awards and honors including a 2022: Lifetime Achievement Award of the International Society of Photosynthesis Research. We hope that the retrospective of Govindjee described in this work will inspire and stimulate the readers to continue probing the photosynthetic apparatuses with new discoveries and breakthroughs.

6.
Med Phys ; 50(12): 8057-8062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655886

RESUMO

PURPOSE: Transmission-target x-ray tubes generate more x-rays than reflection thick-target x-ray tubes. A transmission x-ray tube combined with radiosensitizers has a better radiation enhancement effect. This study investigated the feasibility of using a transmission x-ray tube with radiosensitizers in clinical radiotherapy and its effect on radiation dose enhancement. METHODS: This study used MCNP6.2 to simulate the model of a transmission x-ray tube and Co-60 beam.   The radiation enhancement effect of radiosensitizers was examined with iodine-127 (I-127), radioiodinated iododeoxyuridine (IUdR), and gold nanoparticles (GNPs). RESULTS: The study results showed that the dose enhancement factor (DEF) of the transmission x-ray tube with GNPs was 10.27, which was higher than that of I-127 (6.46) and IUdR (3.08). The DEF of the Co-60 beam with GNPs, I-127, and IUdR was 1.23, 1.19, and 1.2, respectively. The Auger electron flux of the transmission x-ray tube with GNPs was 1.19E+05 particles/cm2 . CONCLUSIONS: This study found that a transmission x-ray tube with appropriate radiosensitizers could produce a high rate of Auger electrons to fulfill the radiation enhancement effect, and this procedure has the potential to become a radiotherapy modality.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Idoxuridina , Raios X , Método de Monte Carlo , Ouro , Nanopartículas Metálicas/uso terapêutico
7.
Int J Biol Macromol ; 253(Pt 6): 127090, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37758107

RESUMO

κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.


Assuntos
Hidrogéis , Mananas , Hidrogéis/química , Carragenina/química , Saponinas de Quilaia , Mananas/química , Lipídeos
8.
Appl Radiat Isot ; 199: 110869, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37267775

RESUMO

Cancer has become one of the major diseases that seriously threaten human health. In order to improve the therapeutic gain ratio (TGF) of conventional X-ray and electron beams, we studied the dose enhancement effect and secondary electrons emission of Au-Fe nanoparticle heterostructures by Monte Carlo method. Under the irradiation of 6 MeV photon and 6 MeV electron beams, the Au-Fe mixture has a dose enhancement effect. For this reason, we explored the secondary electrons production that leads to dose enhancement. For 6 MeV electron beam irradiation, Au-Fe nanoparticle heterojunctions have an higher electrons emission than Au and Fe nanoparticles. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.00024. For 6 MV X-ray beam irradiation, Au nanoparticle and Au-Fe nanoparticle heterojunction have similar electrons emission, while Fe nanoparticle has the lowest one. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.000118. This study contributes to improve the tumor-killing effect of conventional X-ray radiotherapy treatment and has guiding significance for the research of new nanoparticles.

9.
Sensors (Basel) ; 23(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36991892

RESUMO

The saltiness enhancement effect can be produced by adding specific substances to dietary salt (sodium chloride). This effect has been used in salt-reduced food to help people forge healthy eating habits. Therefore, it is necessary to objectively evaluate the saltiness of food based on this effect. In a previous study, sensor electrodes based on lipid/polymer membrane with Na+ ionophore have been proposed to quantify the saltiness enhanced by branched-chain amino acids (BCAAs), citric acid, and tartaric acid. In this study, we developed a new saltiness sensor with the lipid/polymer membrane to quantify the saltiness enhancement effect of quinine by replacing a lipid that caused an unexpected initial drop in the previous study with another new lipid. As a result, the concentrations of lipid and ionophore were optimized to produce an expected response. Logarithmic responses have been found on both NaCl samples and quinine-added NaCl samples. The findings indicate the usage of lipid/polymer membranes on novel taste sensors to evaluate the saltiness enhancement effect accurately.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36883991

RESUMO

A kind of drug-loaded nanomotors with deep penetration was developed to improve the therapeutic effect of ferroptosis on tumor. The nanomotors were constructed by co-loading hemin and ferrocene (Fc) on the surface of bowl-shaped polydopamine (PDA) nanoparticles. The near-infrared response of PDA makes the nanomotor have high tumor penetration capability. In vitro experiments show that the nanomotors can exhibit good biocompatibility, high light to heat conversion efficiency, and deep tumor permeability. It is worth noting that under the catalysis of H2O2 overexpressed in the tumor microenvironment, the Fenton-like reagents hemin and Fc loaded on the nanomotors can increase the concentration of toxic •OH. Furthermore, hemin can consume glutathione in tumor cells and trigger the up-regulation of heme oxygenase-1, which can efficiently decompose hemin to Fe2+, thus producing the Fenton reaction and causing a ferroptosis effect. Notably, thanks to the photothermal effect of PDA, it can enhance the generation of reactive oxygen species and thus intervene in the Fenton reaction process, thereby enhancing the ferroptosis effect photothermally. In vivo antitumor results show that the drug-loaded nanomotors with high penetrability showed an effective antitumor therapeutic effect.

11.
Bioresour Technol ; 371: 128598, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634877

RESUMO

After the biochar recovery of phosphorus (P), its role in eliminating Cr(VI) is uncertain. In this study, the iron-sulfur biochar (Fe/S@BC) was made by grinding Fe0, S0, and biochar with a ball mill. P-loaded iron-sulfur biochar (P-Fe/S@BC) was produced after recovering P from simulated wastewater and then used to remove Cr(VI) contamination in waterbodies. P-Fe/S@BC got a rich pore structure and more reactive sites through P-recovery. The experiments revealed that P-Fe/S@BC had an enhancement effect on Cr(VI) pollution with removal efficiencies of 76.9 % ∼ 99.4 %, all greater than Fe/S@BC (58.2 %). In particular, 25P-Fe/S@BC (with 6.55 mg P/g) had the most significant advantage. The combination of physical adsorption, electrostatic attraction, and precipitation contributed to Cr(VI) removal. This is an efficient strategy for reusing Fe/S@BC followed by P-recovery, intending to improve the Cr(VI) removal effect and achieve the sustainable use of P resources and wastes.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cromo/química , Adsorção
12.
Environ Sci Technol ; 57(5): 1882-1893, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36607701

RESUMO

A Co3O4-activated chlorite (Co3O4/chlorite) process was developed to enable the simultaneous generation of high-valent cobalt species [Co(IV)] and ClO2 for efficient oxidation of organic contaminants. The formation of Co(IV) in the Co3O4/chlorite process was demonstrated through phenylmethyl sulfoxide (PMSO) probe and 18O-isotope-labeling tests. Both experiments and theoretical calculations revealed that chlorite activation involved oxygen atom transfer (OAT) during Co(IV) formation and proton-coupled electron transfer (PCET) in the Co(IV)-mediated ClO2 generation. Protons not only promoted the generation of Co(IV) and ClO2 by lowering the energy barrier but also strengthened the resistance of the Co3O4/chlorite process to coexisting anions, which we termed a proton enhancement effect. Although both Co(IV) and ClO2 exhibited direct oxidation of contaminants, their contributions varied with pH changes. When pH increased from 3 to 5, the deprotonation of contaminants facilitated the electrophilic attack of ClO2, while as pH increased from 5 to 8, Co(IV) gradually became the main contributor to contaminant degradation owing to its higher stability than ClO2. Moreover, ClO2- was transformed into nontoxic Cl- rather than ClO3- after the reaction, thus greatly reducing possible environmental risks. This work described a Co(IV)-involved chlorite activation process for efficient removal of organic contaminants, and a proton enhancement mechanism was revealed.


Assuntos
Compostos Clorados , Prótons , Cloretos , Óxidos , Cobalto , Oxirredução , Cloro
13.
Int J Nanomedicine ; 17: 5391-5411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419717

RESUMO

Introduction: Photoimmunotherapy is a breakthrough treatment for malignant tumors. Its uniqueness is that it uses antibody mediated targeted delivery to achieve high tumor specificity and uses laser-activated biophysical mechanism to accurately induce the rapid death of cancer cells and avoid damaging the surrounding normal tissues. Methods: In this paper, an iron-based micelle was designed to encapsulate the photothermal agent indocyanine green (ICG) and a cyclic tripeptide of arginine-glycine-aspartic acid (cRGD) as targeted multifunctional ICG@SANPs-cRGD nanoparticles for combined photothermal/photodynamic/immune therapy of breast cancer. Results: The experimental results show that ICG@SANPs-cRGD nanoparticles have good biocompatibility and photothermal conversion ability. Photothermal therapy (PTT) and photodynamic therapy (PDT) based on ICG@SANPs-cRGD can not only inhibit the proliferation, invasion and migration of tumor cells, but also directly kill tumor cells by inducing apoptosis or necrosis. Dual-mode fluorescence light (FL) and magnetic resonance imaging (MRI) imaging in mice confirmed the selective accumulation at tumor sites and imaging ability of ICG@SANPs-cRGD. PTT/PDT combined with Anti-PD-L1 immunotherapy based on ICG@SANPs-cRGD mediated the immunogenic cell death (ICD) of tumor cells by regulating the expression of immune-related indicators and activated the body's immune response mechanism, which enhanced the immunotherapy effect of immune checkpoint block (ICB). PTT/PDT combined with Anti-PD-L1 therapy not only prevented the progression of the primary tumor but also inhibited the distant metastasis of the tumor. Discussion: This study explores the biomedical application of PTT/PDT combined with Anti-PD-L1 based on ICG@SANPs-cRGD nanomaterials for breast cancer treatment and demonstrates the potential of ICG@SANPs-cRGD as a multifunctional therapeutic platform for future cancer therapy.


Assuntos
Nanopartículas Multifuncionais , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Terapia Fototérmica , Imunoterapia , Fatores Imunológicos , Verde de Indocianina/farmacologia
14.
Psychol Health Med ; : 1-12, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203394

RESUMO

Primary, secondary, and tertiary reinforcement contribute to the maintenance of smoking behaviour and may influence the efficacy of different cessation treatments. This analysis examined these relationships in a large general population sample and investigated how previous experiences of the different reinforcement mechanisms impacted future quit attempts. Random digit telephone dialing was used to recruit a sample of Canadian adults who smoked and were interested in being part of a hypothetical program that would provide nicotine replacement therapy (NRT) patches free by mail and half of the eligible participants were randomized to actually receive a five-week supply of NRT patches. During the interviews, reasons for relapse to smoking during previous quit attempts were collected and coded by two reviewers (disagreements were settled by a third reviewer). Binary logistic regression was used to determine if type of reinforcer moderated the intervention effect of the patches. Participants who made cessation attempts in the past year were more likely to report negative (p = .039), secondary (p = .041), and tertiary (p = .010) reinforcers and less likely to report positive reinforcers (p = .016) compared to those who did not attempt to quit. Logistic regressions revealed no significant conditional effects of the intervention on the relationship between reinforcer type and quit attempts or 30-day smoking abstinence. Analysis including all three reinforcers showed negative reinforcers decreased but tertiary reinforcers increased the odds participants reported a cessation attempt before the baseline interview and between baseline and 8-weeks. Understanding the different ways nicotine reinforces smoking behaviour could help guide individuals to more effective treatment options.

15.
Int J Pharm ; 626: 122155, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049584

RESUMO

This study sought to provide approach for evaluating and predicting the efficacy and safety of permeation enhancers on the basis of their kinetic distribution behavior in the skin dictated by physicochemical properties. Herein, the efficacy-safety regularity of eight permeation enhancers were studied with ex vivo skin permeation study, small-angle X-ray scattering, MTT assay, H&E staining, and in vivo skin erythema analysis, classifying into the following three categories: high enhancement-low irritation, medium enhancement-high irritation, and low enhancement-low irritation. These three modes were positively correlated with the distribution amount of permeation enhancers in the skin layers and verified by the in vitro tape-stripping study. The kinetic parameter, effective-safety index (IES), was proposed to describe the regularity of enhancement effect tendency and irritation risk, and the relationship between IES and physicochemical properties of permeation enhancers was analyzed with multiple regression analysis. According to the results of modulated temperature differential scanning calorimetry and dielectric spectrum, permeation enhancers with high lipophilicity and low polarity had IES > 1, suggesting high enhancement effect and low irritation due to their higher affinity with the stratum corneum (SC) than with epidermis (EP). Permeation enhancers with medium lipophilicity and medium polarity exhibited 0 < IES ≤ 1, showing medium enhancement effect and high irritation, as determined by their comparable affinity with the SC and epidermis (EP). However, permeation enhancers with low lipophilicity and high polarity had IES â†’ 0, demonstrating low enhancement effect and irritation, as indicated by their poor affinity with the SC. In summary, different physicochemical properties of permeation enhancers influenced their affinities with skin layers, resulting in their different enhancement effect and irritation potential. This study will provide a theoretical basis and criteria for evaluating and predicting the safety and efficacy of permeation enhancers, which will enable a more rational selection of permeation enhancers in the optimization of transdermal patches.


Assuntos
Absorção Cutânea , Pele , Administração Cutânea , Eritema , Humanos , Permeabilidade , Pele/metabolismo , Adesivo Transdérmico
16.
New Phytol ; 236(2): 538-546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832002

RESUMO

The current definition of photosynthetically active radiation includes only photons from 400 up to 700 nm, despite evidence of the synergistic interaction between far-red photons and shorter-wavelength photons. The synergy between far-red and shorter-wavelength photons has not been studied in sunlight under natural conditions. We used a filter to remove photons above 700 nm to quantify the effects on photosynthesis in diverse species under full sun, medium light intensity and vegetation shade. Far-red photons (701 to 750 nm) in sunlight are used efficiently for photosynthesis. This is especially important for leaves in vegetation shade, where far-red photons can be > 50% of the total incident photons between 400 and 750 nm. Far-red photons accounted for 24-25% of leaf gross photosynthesis (Pgross ) in a C3 and a C4 species when sunlight was filtered through a leaf, and 10-14% of leaf Pgross in a tree and an understory species in deep shade. Accounting for the photosynthetic activity of far-red photons is critical for accurate measurement and modeling of photosynthesis at single leaf, canopy and ecosystem scales. This, in turn, is crucial in understanding crop productivity, the global carbon cycle and climate change impacts on agriculture and ecosystems.


Assuntos
Ecossistema , Luz Solar , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação
17.
Electrophoresis ; 43(21-22): 2062-2073, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35621205

RESUMO

The effects of fluid slippage on the pressure-driven electrokinetic energy conversion in conical nanochannels are systematically investigated in this paper. We present a multiphysical model that couples the Planck-Nernst-Poisson equations and the Navier-Stokes equation with a Navier slip condition to fulfill this purpose. We systematically look into the variation of various performance indicators of electrokinetic energy conversion, for example, streaming current, streaming potential, generation power, energy conversion efficiency, regulation parameter, and enchantment ratio, with the conicity of nanochannels and the slip length for two pressure differences of the same magnitude but opposite directions. Particularly, enhancement ratios related to streaming current, streaming potential, generation power, and energy conversion efficiency are defined to comprehensively measure the enhancement of the performance of electrokinetic energy conversion due to the slip length. The results demonstrate that a combination of large slip length and small conicity enhances the electrokinetic energy conversion performance significantly. Furthermore, the fluid slippage-induced enhancement of the electrokinetic energy conversion in the backward pressure difference mode is stronger than that in the forward pressure difference mode. Our results provide design and operation guidelines for pressure-driven electrokinetic energy conversion devices.

18.
Materials (Basel) ; 15(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407817

RESUMO

The quasicontinuum method has been applied to probe the thin film with surface multi-defects, which is commonly seen in nanoimprint technique and bulk micromachining. Three unilaterally distributed multi-defect models and six bilaterally distributed multi-defect models of Pt thin film have been carried out in nanoindentation. The results show that the nanohardness gradually decreases as the number of unilaterally distributed multi-defects increases, along with the increasingly low decline rate of the nanohardness. The synergy effect of the unilaterally distributed multi-defects has been highly evidenced by the critical load revision for dislocation emission of Pt thin film, and it is predicted into a universal form with the synergy coefficient among the existing multi-defects for FCC metals. Moreover, the nanohardness obviously increases when the bilaterally distributed multi-defects form into symmetrical couple, and it could be even greater than the one with defect-free surface, due to the symmetry-induced enhancement effect on nanohardness. The symmetry-induced enhancement coefficient has been brought out and has well explained the symmetry-induced enhancement effect of bilaterally distributed multi-defects on the nanohardness by a prediction formula. Furthermore, the characteristic length of symmetric relations has been brought out to calculate the symmetry-induced enhancement coefficient and it has been effectively predicted to equal to the sum of the adjacent distance between the surface defect and the indenter, the defect depth near the indenter, and the defect width for FCC metal.

19.
Adv Drug Deliv Rev ; 183: 114168, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189265

RESUMO

The rapid increase of antibiotic resistance in pathogenic microorganisms has become one of the most severe threats to human health. Antimicrobial photodynamic therapy (aPDT), a light-based regimen, has offered a compelling nonpharmacological alternative to conventional antibiotics. The activity of aPDT is based on cytotoxic effect of reactive oxygen species (ROS), which are generated through the photosensitized reaction between photon, oxygen and photosensitizer. However, limited by the penetration of light and photosensitizers in human tissues and/or the infiltration of oxygen and photosensitizers in biofilms, the eradication of deeply located or biofilm-associated infections by aPDT remains challenging. Ultrasound irradiation bears a deeper penetration in human tissues than light and, sequentially, can promote drug delivery through cavitation effect. As such, the combination of ultrasound and aPDT represents a potent antimicrobial strategy. In this review, we summarized the recent progresses in the area of the combination therapy using ultrasound and aPDT, and discussed the potential mechanisms underlying enhanced antimicrobial effect by this combination therapy. The future research directions are also highlighted.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Biofilmes , Humanos , Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Ultrassom
20.
ACS Appl Mater Interfaces ; 14(9): 11626-11635, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212543

RESUMO

The development of high-performance electrocaloric (EC) materials is crucial for solid-state refrigeration applied in micro-electromechanical systems. Herein, a large room-temperature EC response is realized in (1 - x)(K0.49Na0.49Li0.02)(Nb0.8Ta0.2)O3-xCaZrO3 (KNLNT-xCZ) benefiting from a relaxor enhancement effect and multilayer ceramic construct. The relaxor enhancement effect is because the long-range order is broken by adding CaZrO3, which is in favor of enhancing the temperature change (ΔT) and broadening the temperature span (Tspan) at room temperature. A ΔT of 0.48 K in the KNLNT-12CZ ceramic is ∼5 times higher than that in the KNLNT-8CZ ceramic at 30 °C. KNLNT-12CZ also exhibits good temperature stability, and the Tspan is up to 65 K. In addition, the multilayer ceramic construct improves the breakdown electric field (Eb) through diminishing defects, leading to a booming ΔT of 3.2 K at 30 °C under 250 kV cm-1 via a direct measurement. The work proposes an avenue for developing high-performance EC materials with a large EC response and broad Tspan in solid-state refrigeration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA