Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Sci Food Agric ; 104(12): 7639-7648, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38775623

RESUMO

BACKGROUND: Obesity is recognized as a lifestyle-related disease and the main risk factor for a series of pathological conditions, including cardiovascular diseases, hypertension and type 2 diabetes. Citrus limon is an important medicinal plant, and its fruits are rich in flavonoids investigated for their potential in managing obesity. In the present work, a green extraction applied to lemon squeezing waste (LSW) was optimized to recover pancreatic lipase (PL) inhibitors. RESULTS: The microwave-assisted procedure yielded an extract with higher lipase inhibitory activity than those obtained by maceration and ultrasound. The main compounds present in the extract were identified by high-performance liquid chromatographic-mass spectrometric analysis, and hesperidin, eriocitrin and 4'-methyllucenin II were isolated. The three compounds were evaluated for in vitro PL inhibitory activity, and 4'-methyllucenin II resulted in the most promising inhibitor (IC50 = 12.1 µmol L-1; Ki = 62.2 µmol L-1). Multispectroscopic approaches suggested the three flavonoids act as competitive inhibitors and the binding studies indicated a greater interaction between PL and 4'-methyllucenin II. Docking analysis indicated the significant interactions of the three flavonoids with the PL catalytic site. CONCLUSION: The present work highlights flavonoid glycosides as promising PL inhibitors and proposes LSW as a safe ingredient for the preparation of food supplements for managing obesity. © 2024 Society of Chemical Industry.


Assuntos
Citrus , Inibidores Enzimáticos , Flavonoides , Frutas , Lipase , Simulação de Acoplamento Molecular , Extratos Vegetais , Lipase/antagonistas & inibidores , Lipase/metabolismo , Lipase/química , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Citrus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Frutas/química , Humanos , Resíduos/análise , Simulação por Computador , Cromatografia Líquida de Alta Pressão
2.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534250

RESUMO

Extremozymes combine high specificity and sensitivity with the ability to withstand extreme operational conditions. This work presents an overview of extremozymes that show potential for environmental monitoring devices and outlines the latest advances in biosensors utilizing these unique molecules. The characteristics of various extremozymes described so far are presented, underlining their stability and operational conditions that make them attractive for biosensing. The biosensor design is discussed based on the detection of photosynthesis-inhibiting herbicides as a case study. Several biosensors for the detection of pesticides, heavy metals, and phenols are presented in more detail to highlight interesting substrate specificity, applications or immobilization methods. Compared to mesophilic enzymes, the integration of extremozymes in biosensors faces additional challenges related to lower availability and high production costs. The use of extremozymes in biosensing does not parallel their success in industrial applications. In recent years, the "collection" of recognition elements was enriched by extremozymes with interesting selectivity and by thermostable chimeras. The perspectives for biosensor development are exciting, considering also the progress in genetic editing for the oriented immobilization of enzymes, efficient folding, and better electron transport. Stability, production costs and immobilization at sensing interfaces must be improved to encourage wider applications of extremozymes in biosensors.


Assuntos
Técnicas Biossensoriais , Herbicidas , Praguicidas , Técnicas Biossensoriais/métodos , Praguicidas/análise , Monitoramento Ambiental/métodos
3.
Microorganisms ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257939

RESUMO

Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.

4.
Food Chem ; 441: 138237, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38176137

RESUMO

A reliable, simple, and sensitive method capable of quantifying six organosulfur compounds (OSCs) was established. The samples were extracted by water containing 3 % formic acid with a simple vortex, ultrasound, and centrifugation step, and the solutions were analyzed by ultra-high-performance liquid chromatography separation system coupled with a triple-quadrupole mass spectrometry (UHPLC - MS/MS). Then the method was applied for the analysis of six OSCs in five varieties of two types Welsh onions in China, and the moisture content, reducing sugar, total polyphenols, and 21 free amino acids were also analyzed to study the characters of these Welsh onions intensively. Multivariate statistical analysis was used to investigate the differences in OSCs and free amino acids profiles among the samples. This study showed that enzymatic inhibition method combined with UHPLC - MS/MS is an effective technique to analyze OSCs in Welsh onion, and could be valuable for the routine quantitation of OSCs in other foods.


Assuntos
Cebolas , Espectrometria de Massas em Tandem , Cebolas/química , Cromatografia Líquida de Alta Pressão/métodos , Aminoácidos/química , China , Compostos de Enxofre/química
5.
Arch Microbiol ; 206(2): 72, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252323

RESUMO

Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.


Assuntos
Antibacterianos , COVID-19 , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Pandemias/prevenção & controle , Saúde Pública
6.
Food Chem ; 442: 138412, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241996

RESUMO

This study aims to investigate how alkali lignin inhibits protein digestion and explore thermal treatment as a potential solution. Solid alkali lignin species pre-heated at different temperatures (150, 200, and 250 °C) and soluble acid-differentiated fractions are subjected to in vitro protein digestion. A range of techniques, including Thermogravimetric Analysis (TGA), Size-Exclusion Chromatography (SEC), Zeta Potential Analyzer, 1H NMR, Isothermal Titration Calorimetry (ITC), and Molecular Docking, were used to investigate the inhibitory mechanism of alkali lignin on pancreatic proteases hydrolysis. Our results suggest that soluble alkali lignin inhibits pancreatic trypsin and chymotrypsin, with the acid-differentiated soluble fraction (LgpH<1) displaying the strongest inhibition and proteases' binding affinity due to the abundance of polar groups (e.g., -OH, -CHO), which facilitate hydrogen-bond formation. Furthermore, pre-heating lignin (200 °C) was confirmed effective for removing LgpH<1 and its negative nutritional influence, providing a feasible strategy for overcoming the negative impact of alkali lignin on protein digestion.


Assuntos
Álcalis , Lignina , Lignina/metabolismo , Álcalis/química , Simulação de Acoplamento Molecular , Hidrólise , Ácidos , Quimotripsina
7.
Bioorg Chem ; 143: 107008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091720

RESUMO

A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Tetra-Hidroisoquinolinas , Humanos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Cinética , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Tetra-Hidroisoquinolinas/farmacologia , Doença de Alzheimer/tratamento farmacológico
8.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894878

RESUMO

Berries are rich in bioactive compounds, including antioxidants and especially polyphenols, known inhibitors of starch metabolism enzymes. Lactic acid fermentation of fruits has received considerable attention due to its ability to enhance bioactivity. This study investigated the effect of fermentation with L. mesenteroides of juice from the Chilean berry murta on antioxidant activity, release of polyphenols, and inhibitory activity against α-amylase and α-glucosidase enzymes. Three types of juices (natural fruit, freeze-dried, and commercial) were fermented. Total polyphenol content (Folin-Ciocalteu), antioxidant activity (DPPH and ORAC), and the ability to inhibit α-amylase and α-glucosidase enzymes were determined. Fermented murta juices exhibited increased antioxidant activity, as evidenced by higher levels of polyphenols released during fermentation. Inhibition of α-glucosidase was observed in the three fermented juices, although no inhibition of α-amylase was observed; the juice from freeze-dried murta stood out. These findings highlight the potential health benefits of fermented murta juice, particularly its antioxidant properties and the ability to modulate sugar assimilation by inhibiting α-glucosidase.


Assuntos
Antioxidantes , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Glucosidases/química , Fermentação , Glucose , Polifenóis/farmacologia , alfa-Amilases
9.
Foods ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835184

RESUMO

Medicinal plants offer a valuable source of natural compounds with specific and selective bioactivity. These compounds have been isolated since the mid-nineteenth century and are now commonly used in modern medications. L. octovalvis (Jacq.) P.H.Raven, C. aconitifolius, and C. longirostrata are Mexican medicinal plants consumed regularly, and research has shown that they contain bioactive compounds capable of promoting the inhibition of digestive enzymes. This is noteworthy since enzyme inhibitors are bioactive substances that interact with enzymes, diminishing their activity and thereby contributing to the management of diseases and metabolic disturbances. To investigate the activity of these plants, individual analyses were conducted, assessing their proximal composition, bioactive compounds, and inhibition of α-Amylase, α-Glucosidase, lipase, and pepsin. The results revealed that all three plants exhibited enzymatic inhibition. When comparing the plants, it was determined that C. aconitifolius had the lowest concentration required for a 50% inhibition in α-Amylase, α-Glucosidase, and lipase, as indicated by the IC50 values. For pepsin, C. longirostrata demonstrated the lowest IC50 value. By understanding the bioactive compounds present in these plants, we can establish the relationship they have with enzymatic inhibition, which can be utilized for future investigations.

10.
Plants (Basel) ; 12(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896103

RESUMO

In this study, the high isoflavone-enriched soy leaves (IESLs) were manufactured by treating with the chemical inducer ethephon, a plant growth regulator, to confirm changes in the properties of soy leaves (SLs), which are underutilized. Ethephon treatment concentrations consisted of 0 (SL1), 150 (SL2), and 300 (SL3) µg/mL. The composition analysis and physiological activity were conducted according to the ethephon treatment concentration of SLs. There was no significant difference in the proximate composition and fatty acids, except for an increase with increasing ethephon treatment concentrations. Depending on the ethephon treatment concentration, free amino acids increased to 1413.0, 1569.8, and 2100.4 mg/100 g, and water-soluble vitamins increased to 246.7, 244.7, and 501.6 mg/100 g. In particular, the functional substance isoflavone increased significantly to 1430.11, 7806.42, and 14,968.00 µg/g. Through this study, it was confirmed that the nutritional components and isoflavones of SLs increased according to the ethephon treatment concentration, a chemical inducer treatment agent. This can be used as a high-value-added biosubstance for raw materials for functional foods, cosmetics, and for natural drugs.

11.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513186

RESUMO

Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.


Assuntos
Infecções por HIV , HIV-1 , Hepatite C , Vírus da Influenza A Subtipo H1N1 , Viroses , Humanos , Vírus da Hepatite B , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Fenóis/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Hepatite C/tratamento farmacológico
12.
Biophys Chem ; 299: 107042, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263179

RESUMO

Ureases are enzymes produced by fungi, plants, and bacteria associated with agricultural and clinical problems. The urea hydrolysis in NH3 and CO2 leads to the loss of N-urea fertilizers in soils and changes the human stomach microenvironment, favoring the colonization of H. pylori. In this sense, it is necessary to evaluate potential enzyme inhibitors to mitigate the effects of their activities and respond to scientific and market demands to produce fertilizers with enhanced efficiency. Thus, biophysical and theoretical studies were carried out to evaluate the influence of the N-alkyl chain in benzoyl-thiourea derivatives on urease enzyme inhibition. A screening based on IC50, binding constants, and theoretical studies demonstrated that BTU1 without the N-alkyl chain (R = H) was more active than other compounds, so the magnitude of the interaction was determined as BTU1 > BTU2 > BTU3 > BTU4 > BTU5, corresponding to progressively increased chain length. Thus, BTU1 was selected for interaction and soil application essays. The binding constants (Kb) for the supramolecular urease-BTU1 complex ranged from 7.95 to 5.71 × 103 M-1 at different temperatures (22, 30, and 38 °C), indicating that the preferential forces responsible for the stabilization of the complex are hydrogen bonds and van der Waals forces (ΔH = -15.84 kJ mol-1 and ΔS = -36.61 J mol-1 K-1). Theoretical and experimental results (thermodynamics, synchronous fluorescence, and competition assay) agree and indicate that BTU1 is a mixed inhibitor. Finally, urease inhibition was evaluated in the four soil samples, where BTU1 was as efficient as NBPT (based on ANOVA two-way and Tukey test with 95% confidence), with an average inhibition of 20% of urease activity. Thus, the biophysics and theoretical studies are strategies for evaluating potential inhibitors and showed that increasing the N-alkyl chain in benzoyl-thiourea derivatives did not favor urease inhibition.


Assuntos
Helicobacter pylori , Solo , Humanos , Urease/química , Urease/metabolismo , Fertilizantes/análise , Ureia/química , Helicobacter pylori/metabolismo , Inibidores Enzimáticos/farmacologia , Tioureia , Biofísica
13.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378497

RESUMO

Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.

14.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838520

RESUMO

Due to the growing presence of pesticides in the environment and in food, the concern of their impact on human health is increasing. Therefore, the development of fast and reliable detection methods is needed. Enzymatic inhibition-based biosensors represent a good alternative for replacing the more complicated and time-consuming traditional methods (chromatography, spectrophotometry, etc.). This paper describes the development of an electrochemical biosensor exploiting alkaline phosphatase as the biological recognition element and a chemically modified glassy carbon electrode as the transducer. The biosensor was prepared modifying the GCE surface by a mixture of Multi-Walled-Carbon-Nanotubes (MWCNTs) and Electrochemically-Reduced-Graphene-Oxide (ERGO) followed by the immobilization of the enzyme by cross-linking with bovine serum albumin and glutaraldehyde. The inhibition of the biosensor response caused by pesticides was established using 2-phospho-L-ascorbic acid as the enzymatic substrate, whose dephosphorylation reaction produces ascorbic acid (AA). The MWCNTs/ERGO mixture shows a synergic effect in terms of increased sensitivity and decreased overpotential for AA oxidation. The response of the biosensor to the herbicide 2,4-dichloro-phenoxy-acetic-acid was evaluated and resulted in the concentration range 0.04-24 nM, with a limit of the detection of 16 pM. The determination of other pesticides was also achieved. The re-usability of the electrode was demonstrated by performing a washing procedure.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Praguicidas , Fosfatase Alcalina , Técnicas Biossensoriais/métodos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Nanotubos de Carbono/química , Praguicidas/química
15.
Drug Metab Rev ; 55(1-2): 1-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823774

RESUMO

Endogenous estradiol (E2) exerts diverse physiological and pharmacological activities, commonly used for hormone replacement therapy. However, prolonged and excessive exposure to E2 potentially increases estrogenic cancer risk. Reportedly, CYP1 enzyme-mediated biotransformation of E2 is largely concerned with its balance between detoxification and carcinogenic pathways. Among the three key CYP1 enzymes (CYP1A1, CYP1A2, and CYP1B1), CYP1A1 and CYP1A2 mainly catalyze the formation of nontoxic 2-hydroxyestradiol (2-OH-E2), while CYP1B1 specifically catalyzes the formation of genotoxic 4-hydroxyestradiol (4-OH-E2). 4-OH-E2 can be further metabolized to electrophilic quinone intermediates accompanied by the generation of reactive oxygen species (ROS), triggering DNA damage. Since abnormal alterations in CYP1 activities can greatly affect the bioactivation process of E2, regulatory effects of xenobiotics on CYP1s are essential for E2-associated cancer development. To date, thousands of natural and synthetic compounds have been found to show potential inhibition and/or induction actions on the three CYP1 members. Generally, these chemicals share similar planar polycyclic skeletons, the structural motifs and substituent groups of which are important for their inhibitory/inductive efficiency and selectivity toward CYP1 enzymes. This review comprehensively summarizes these known inhibitors and/or inductors of E2-metabolizing CYP1s based on chemical categories and discusses their structure-activity relationships, which would contribute to better understanding of the correlation between xenobiotic-regulated CYP1 activities and estrogenic cancer susceptibility.


Assuntos
Citocromo P-450 CYP1A2 , Neoplasias , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Família 1 do Citocromo P450/metabolismo , Xenobióticos/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Biotransformação
16.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769028

RESUMO

The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of P. oryzae cytochrome bc1 (cyt bc1) complex to perform a high-throughput virtual screening of two commercially available compound libraries. Three chemotypes were selected, from which a small collection of differently substituted analogues was designed and synthesized. The compounds were tested as inhibitors of the cyt bc1 enzyme function and the mycelium growth of both strobilurin-sensitive (WT) and -resistant (RES) P. oryzae strains. This pipeline has permitted the identification of thirteen compounds active against the RES cyt bc1 and five compounds that inhibited the WT cyt bc1 function while inhibiting the fungal mycelia only minimally. Serendipitously, among the studied compounds we identified a new chemotype that is able to efficiently inhibit the mycelium growth of WT and RES strains by ca. 60%, without inhibiting the cyt bc1 enzymatic function, suggesting a different mechanism of action.


Assuntos
Ascomicetos , Fungicidas Industriais , Citocromos b/metabolismo , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Complexo III da Cadeia de Transporte de Elétrons
17.
Macromol Biosci ; 23(8): e2200508, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808212

RESUMO

N-phosphonomethyle-glycine (glyphosate) is the most widely used pesticide worldwide due to its effectiveness in killing weeds at a moderate cost, bringing significant economic benefits. However, owing to its massive use, glyphosate and its residues contaminate surface waters. On site, fast monitoring of contamination is therefore urgently needed to alert local authorities and raise population awareness. Here the hindrance of the activity of two enzymes, the exonuclease I (Exo I) and the T5 exonuclease (T5 Exo) by glyphosate, is reported. These two enzymes digest oligonucleotides into shorter sequences, down to single nucleotides. The presence of glyphosate in the reaction medium hampers the activity of both enzymes, slowing down enzymatic digestion. It is shown by fluorescence spectroscopy that the inhibition of ExoI enzymatic activity is specific to glyphosate, paving the way for the development of a biosensor to detect this pollutant in drinking water at suitable detection limits, i.e., 0.6 nm.


Assuntos
Água Potável , Herbicidas , Herbicidas/análise , Herbicidas/farmacologia , Glicina , Glifosato
18.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297372

RESUMO

Histone deacetylases (HDAC) are epigenetic enzymes responsible for repressing gene expression through the deacetylation of histone lysine residues. Therefore, inhibition of HDACs has become an interesting approach for the treatment of several diseases, including cancer, hematology, neurodegenerative, immune diseases, bacterial infections, and more. Resveratrol (RVT) has pleiotropic effects, including pan-inhibition of HDAC isoforms; however, its ability to interfere with membranes requires additional optimization to eliminate nonspecific and off-target effects. Thus, to explore RVT as a scaffold, we designed a series of novel HDAC-1 and -2 inhibitors containing the 2-aminobenzamide subunit. Using molecular modeling, all compounds, except unsaturated compounds (4) and (7), exhibited a similar mode of interaction at the active sites of HDAC 1 and 2. The docking score values obtained from the study ranged from -12.780 to -10.967 Kcal/mol. All compounds were synthesized, with overall yields ranging from 33% to 67.3%. In an initial screening, compounds (4), (5), (7), and (20)-(26), showed enzymatic inhibitory effects ranging from 1 to 96% and 6 to 93% against HDAC-1 and HDAC-2, respectively. Compound (5), the most promising HDAC inhibitor in this series, was selected for IC50 assays, resulting in IC50 values of 0.44 µM and 0.37 µM against HDAC-1 and HDAC-2, respectively. In a panel of selectivity against HDACs 3-11, compound (5) presented selectivity towards Class I, mainly HDAC-1, 2, and 3. All compounds exhibited suitable physicochemical and ADMET properties as determined using in silico simulations. In conclusion, the optimization of the RVT structure allows the design of selective HDAC inhibitors, mainly targeting HDAC-1 and HDAC-2 isoforms.

19.
Front Pharmacol ; 13: 1009868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176449

RESUMO

Cannabis sativa L. is a plant that contains numerous chemically active compounds including cannabinoids such as trans-Δ-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and flavone derivatives, such as luteolin-7-O-glucuronide and apigenin glucuronide. In particular, the polar fraction of hemp including many phenolic compounds has been overlooked when compared with the more lipophilic fraction containing cannabinoids. Therefore, the aim of this study was to assess two extracts of industrial hemp (C. sativa) of different polarity (aqueous and hexane) by evaluating their antioxidant profile and their neuroprotective potential on pharmacological targets in the central nervous system (CNS). Several assays on in vitro antioxidant capacity (DPPH, superoxide radical, FRAP, ORAC), as well as inhibition of physiological enzymes such as acetylcholinesterase (AChE) and monoaminooxidase A (MAO-A) were carried out in order to find out how these extracts may be helpful to prevent neurodegenerative disorders. Neuro-2a cell line was selected to test the cytotoxic and neuroprotective potential of these extracts. Both extracts showed striking antioxidant capacity in the FRAP and ORAC assays, particularly the hexane extract, and interesting results for the DPPH and superoxide radical uptake assays, with the aqueous extract standing out especially in the latter. In enzyme inhibition assays, the aqueous extract showed AChE and MAO-A inhibitory activity, while the hexane extract only reached IC50 value for AChE inhibitory bioassay. Neuro-2a assays demonstrated that polyphenolic extract was not cytotoxic and exhibited cytoprotective properties against hydrogen peroxide and antioxidant response decreasing reactive oxygen species (ROS) production. These extracts could be a source of compounds with potential benefit on human health, especially related to neurodegenerative disorders.

20.
Phytochem Anal ; 33(8): 1190-1197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35999031

RESUMO

INTRODUCTION: Capillary zone electrophoresis with direct UV detection (CZE-UV) was used to investigate the hypothesis about the extract of Baccharis trimera enzymatic activities as an analytical approach to monitoring the phenomenon. OBJECTIVE: The aim of this work was to investigate enzymatic bioactivities of the hydroalcoholic and infusion extracts of B. trimera through screening evaluation of the inhibition of the enzymes acetylcholinesterase (AChE) and α-glycosidase (α-GLY). METHOD: An alternative approach using CZE-UV to hydroalcoholic and infusion extracts of B. trimera monitoring was applied to evaluate the inhibition ability of the enzymes AChE and α-GLY. The result of the reaction of acetylthiocholine (AThCh) with AChE was thiocholine (TCh) and acetic acid, and from the amount of TCh generated, the AChE inhibition was calculated. For the inhibition study of the two enzymes, the reactions of the extracts were optimised to be performed in situ, inside the capillary column, and the introduction of the solutions was performed through ordered sequential plug injections. RESULTS: Samples extracted with 70% ethanol presented 7.80% inhibition for AChE and 0.51% for α-GLY, while samples extracted with 96% ethanol resulted in 6.89% inhibition for AChE and no inhibition activity for α-GLY. CONCLUSION: In the present work, the potentialities of CZE-UV for the study of hydroalcoholic and infusion extracts of B. trimera were demonstrated. The experimental results were useful for the calculation of the percentage of the inhibition activities of the AChE and α-GLY enzymes.


Assuntos
Baccharis , Acetilcolinesterase , Extratos Vegetais/farmacologia , Etanol , Ácido Acético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA