Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Clin Cases ; 11(6): 1275-1286, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36926128

RESUMO

Metabolic associated fatty liver disorder (MAFLD) characterizes the contributing etiologies (i.e., type 2 diabetes mellitus, metabolic syndrome, overweight) of individuals with fatty liver disease that affects 1/3rd of the world population. In 2020, the coronavirus disease 2019 (COVID-19) crisis was unprecedented, and people with different comorbidities became more susceptible to the infection caused by severe acute respiratory syndrome coronavirus 2. MAFLD patients are frequently obese with added metabolic menace like diabetes, hypertension, and dyslipidemia leading to greater jeopardy of COVID-19. MAFLD patients are 4 to 6-fold more prone towards infections. COVID-19 induces liver injury with elevated levels of aspartate aminotransferase and alanine aminotransferase and insignificantly elevated bilirubin. Hence, MAFLD in COVID-19 patients worsens the condition significantly. The evidence highlighting the interaction between MAFLD and altered liver functioning in COVID-19 suggested that COVID-19 patients with pre-existing MAFLD are at greater risk of morbidity or intensive care unit admission. Direct hepatic injury, enhanced levels of inflammatory cytokines, declined hepatic mitochondrial activity, and compromised immunity are considered as some underlying mechanisms. The main focus of this review is to discuss the implications of metabolic dysfunction associated with fatty liver disease in COVID-19 patients. The review systematically analyzes the effect of striking two worldwide pandemics (MAFLD and COVID-19) together in the present era.

2.
Eur J Pharmacol ; 901: 174078, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839087

RESUMO

The abnormal dietary life style leads to hyperlipidemia and insulin resistance with ectopic lipid accumulation and elevated levels of hepatic glucose development which are the underlying pathological characteristics of fatty liver diseases. The pharmacological inhibition of fatty acid synthase of de novo lipogenesis may regulate the dysfunctional lipid biotransformation and reverse the pathological state of diabetic liver injury. The three pharmacological interventions (PTS; Pterostilbene, ARB; Arbutin, PUR; Purpurin) were administered to manage the condition of diabetic liver injury against the high fat diet (HFD) + Streptozotocin (STZ) 30 mg/kg b.wt. rodent animal model to observe the effect of abnormal fatty acid synthesis. The qRT-PCR was used to evaluate the fatty acid synthase (FASN) expression which is independently allied with diabetes associated fatty liver disorders. To determine the therapeutic potential of three selected drugs, the biochemical parameters and histopathological considerations were utilized. Three subsequent dosage of PTS, ARB and PUR administered (i.e., 30,60 & 120 mg/kg/p.o.) for five weeks significantly alter the serum parameters, oxidative burden in HFD-STZ which, in turn, resulted in diabetic liver injury. It was also revealed that increased mRNA expression of fatty acid synthase (FASN), which is known to promote abnormal fatty acid synthesis through different molecular signaling pathways, was associated with the development of diabetes associated liver injury, this expression was observed to be significantly suppressed by PTS, ARB and PUR treatment. Moreover, the studies of histopathology showed that there was substantial structural improvement after PTS, ARB and PUR treatment. All three selected drugs have been shown to be effective for Diabetic liver injury (DLI) care but PTS shows impressive results compared to other selected drugs.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Hepatopatias/prevenção & controle , Animais , Antraquinonas/uso terapêutico , Antioxidantes/metabolismo , Arbutina/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I/biossíntese , Ácido Graxo Sintase Tipo I/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Hepatopatias/etiologia , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico
3.
Data Brief ; 29: 105206, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071982

RESUMO

In order to rapidly identify the phenotypic profile and possible off-target liability effects of novel synthesized thyromimetics for selection of lead compounds for further optimization studies, we performed in vitro screening on a new small library of synthetic thyromimetics. A comprehensive panel of early toxicity assays comprising cytotoxicity on 4 different cell lines (osteosarcoma, U2OS; lung fibroblast, hTERT; human breast adenocarcinoma, MCF7; human embryonic kidney, HEK293), hERG liability, cytochrome P450 inhibition (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 isoforms), and off-target liability against selected proteins (Aurora B kinase and phosphodiesterase PDE4C1) and epigenetic enzymes (HDAC4, HDAC6, HDAC8, HDAC9 & SIRT7). All the compounds were screened at 10 µM in at least triplicate using well-established in vitro assays with readouts in luminescence or fluorescence polarization mode. The raw data were processed using Microsoft Excel and the Z' for each assay was calculated (acceptable Z' >0.40). The processed and normalized data were organized in tables and visualized using spider plots. The results which are reported in the present manuscript can be used in prediction studies of early toxicity and off-target liabilities of other thyromimetics using in silico methods. The data reported herein support our research article entitled "Design, synthesis and biological evaluation of novel TRß selective agonists sustained by ADME-Toxicity analysis" by Runfola M., Sestito S., et al. [1].

4.
Eur J Med Chem ; 188: 112006, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931337

RESUMO

Although triiodothyronine (T3) induces several beneficial effects on lipid metabolism, its use is hampered by toxic side-effects, such as tachycardia, arrhythmia, heart failure, bone and muscle catabolism and mood disturbances. Since the α isoform of thyroid hormone receptors (TRs) is the main cause of T3-related harmful effects, several efforts have been made to develop selective agonists of the ß isoform that could induce some beneficial effects (i.e. lowering triglyceride and cholesterol levels reducing obesity and improving metabolic syndrome), while overcoming most of the adverse T3-dependent side effects. Herein, we describe the drug discovery process sustained by ADME-Toxicity analysis that led us to identify novel agonists with selectivity for the isoform TRß and an acceptable off-target and absorption, distribution metabolism, excretion and toxicity (ADME-Tox) profile. Within the small series of compounds synthesized, derivatives 1 and 3, emerge from this analysis as "potentially safe" to be engaged in preclinical studies. In in vitro investigation proved that both compounds were able to reduce lipid accumulation in HepG2 and promote lipolysis with comparable effects to those elicited by T3, used as reference drug. Moreover, a preliminary in vivo study confirmed the apparent lack of toxicity, thus suggesting compounds 1 and 3 as new potential TRß-selective thyromimetics.


Assuntos
Desenho de Fármacos , Piridazinas/farmacologia , Receptores beta dos Hormônios Tireóideos/agonistas , Uracila/análogos & derivados , Animais , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Masculino , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/química , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA