Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412704, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136173

RESUMO

A number of quinoidal molecules with symmetric end-capping groups, particularly dicyanomethylene units, have been synthesized for organic optoelectronic materials. In comparison, dissymmetric quinoidal molecules, characterized by end-capping with different groups, are less explored. In this paper, we present the unexpected formation of new formal quinoidal molecules, which are end-capped with both dicyanomethylene and triphenylphosphonium moieties. The structures of these dissymmetric quinoidal molecules were firmly verified by single crystal structural analyses. On the basis of the control experiments and DFT calculations, we proposed the reaction mechanism for the formation of these dissymmetric quinoidal molecules. The respective zwitterionic forms should make contributions to the ground state structures of these quinoidal molecules based on the analysis of their bond lengths and aromaticity and Mayer Bond Orbital (MBO) calculation. This agrees well with the fact that negative solvatochromism was observed for these quinoidal molecules. Although these new quinoidal molecules are non-emissive both in solutions and crystalline states, they become emissive with quantum yields up to 51.4% after elevating the solvent viscosity or dispersing them in a PMMA matrix. Interestingly, their emissions can also be switched on upon binding with certain proteins, in particular with human serum albumin.

2.
ACS Appl Mater Interfaces ; 16(25): 32344-32356, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38718353

RESUMO

A novel, water-stable, perylene diimide (PDI) based metal-organic framework (MOF), namely, U-1, has been synthesized for selective and sensitive detection of perfluorooctanoic acid (PFOA) in mixed aqueous solutions. The MOF shows highly selective fluorescence turn-on detection via the formation of a PFOA-MOF complex. This PFOA-MOF complex formation was confirmed by various spectroscopic techniques. The detection limit of the MOF for PFOA was found to be 1.68 µM in an aqueous suspension. Upon coating onto cellulose paper, the MOF demonstrated a significantly lower detection limit, down to 3.1 nM, which is mainly due to the concentrative effect of solid phase extraction (SPE). This detection limit is lower than the fluorescence sensors based on MOFs previously reported for PFAS detection. The MOF sensor is regenerable and capable of detecting PFOA in drinking and tap water samples. The PDI-MOF-based sensor reported herein represents a novel approach, relying on fluorescence turn-on response, that has not yet been thoroughly investigated for detecting per- and polyfluoroalkyl substances (PFAS) until now.

3.
Gels ; 10(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786213

RESUMO

This paper proposes a new, highly effective fluorescence test for Cr(VI) detection. This method utilizes a hydrogel composed of hydroxyethyl cellulose (HEC), nitrogen-doped carbon quantum dots (N-CQDs), and poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (AMPS). The N-CQDs were successfully synthesized using a simple microwave method, and then conjugated with HEC and AMPS. The higher adsorption (99.41%) and higher reduction rate in H1 likely stems from both the presence of N-CQDs (absent in HB) and their increased free functional groups (compared to H2/H3, where N-CQDs block them). This facilitates the release (desorption) of Cr(VI) from the hydrogels, making it more available for reduction to the less toxic Cr(III). The fluorescent brightness of the HEC-N-CQDs-g-poly(AMPS) hydrogel increases gradually when Cr(VI) is added in amounts ranging from 15 to 120 mg/L. The fluorescent enhancement of the HEC-N-CQDs-g-poly(AMPS) hydrogel appeared to exhibit a good linear relationship with the 15-120 mg of the Cr(VI) concentration, with a detection limit of 0.0053 mg/L, which is lower than the standard value published by WHO. Our study found that the HEC-N-CQDs-g-poly(AMPS) hydrogel served effectively as a fluorescent probe for Cr(VI) detection in aqueous solutions, demonstrating high sensitivity.

4.
Talanta ; 275: 126113, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669958

RESUMO

We are reporting the two curcumin derivatives, ferrocenyl curcumin (Fc-cur) and 4-nitro-benzylidene curcumin (NBC), as a probe through dual modalities, i.e., fluorescence and electrochemical methods, for the detection of nitro-analytes, such as picric acid (PA). The probes exhibited aggregation-induced enhanced emission (AIEE), and the addition of picric acid (PA) demonstrated good and specific fluorimetric identification of PA in the aggregated state. By using density functional theory (DFT), the mechanism of picric acid's (PA) interactions with the probes was further investigated. DFT studies shows evidence of charge transfer from curcumin derivatives probe to picric acid resulting into the formation of an adduct. The reduction of trinitrophenol (PA) to 2, 4, 6-trinitrosophenol was investigated utilizing a probe-modified glassy carbon electrode (GCE) with a good detection limit of 9.63 ± 0.001 pM and 41.01 ± 0.002 pM, respectively, for Fc-cur@GCE and NBC@GCE, taking into account the redox behavior of the probe. The applicability of the designed sensor has been utilized for real-time application in the estimation of picric acid in several water samples collected from the different source.

5.
Methods ; 225: 13-19, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438060

RESUMO

A new molecular structure 1 has been developed on naphthalimide motif. The amine and triazole binding groups have been employed at the 4-position of naphthalimide to explore the sensing behavior of molecule 1. Single crystal x-ray diffraction and other spectroscopic techniques confirm the identity of 1. Compound 1 exhibits high selectivity and sensitivity for Cu2+ ions in CH3CN. The binding of Cu2+ shows âˆ¼ 70-fold enhancement in emission at 520 nm. The binding follows 1:1 interaction and the detection limit is determined to be 6.49 × 10-7 M. The amine-triazole binding site in 1 also corroborates the detection of F- through a colour change in CH3CN. Initially H-bonding and then deprotonation of amine -NH- in the presence of F- are the sequential steps involved in F- recognition with a detection limit of 4.13 × 10-7 M. Compound 1 is also sensible to CN- like F- ion and they are distinguished by Fe3+ ion. Cu2+-ensemble of 1 fluorimetrically recognizes F- among the tested anions and vice-versa. The collaborative effect of amine and triazole motifs in the binding of both Cu2+ and F-/CN- has been explained by DFT calculation.


Assuntos
Colorimetria , Cobre , Naftalimidas , Espectrometria de Fluorescência , Naftalimidas/química , Cobre/química , Cobre/análise , Colorimetria/métodos , Espectrometria de Fluorescência/métodos , Cianetos/análise , Cianetos/química , Limite de Detecção , Fluoretos/análise , Fluoretos/química , Corantes Fluorescentes/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio
6.
Colloids Surf B Biointerfaces ; 237: 113839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492411

RESUMO

Herein, we have employed a supramolecular assembly of a cationic dye, LDS-698 and a common surfactant sodium dodecyl sulfate (SDS) as a turn-on fluorescent sensor for protamine (Pr) detection. Addition of cationic Pr to the solution of dye-surfactant complex brings negatively charged SDS molecules together through strong electrostatic interaction, assisting aggregation of SDS way before its critical micellar concentration (CMC). These aggregates encapsulate the dye molecules within their hydrophobic region, arresting non-radiative decay channels of the excited dye. Thus, the LDS-698•SDS assembly displays substantial enhancement in fluorescence intensity that follows a nice linear trend with Pr concentration, providing limit of detection (LOD) for Pr as low as 3.84(±0.11) nM in buffer, 124.4(±6.7) nM in 1% human serum and 28.3(±0.5) nM in 100% human urine. Furthermore, high selectivity, low background signal, large stokes shift, and emission in the biologically favorable deep-red region make the studied assembly a promising platform for Pr sensing. As of our knowledge it is the first ever Pr sensory platform, using a very common surfactant (SDS), which is economically affordable and very easily available in the market. This innovative approach can replace the expensive, exotic and specialized chemicals considered for the purpose and thus showcase its potential in practical applications.


Assuntos
Surfactantes Pulmonares , Tensoativos , Humanos , Tensoativos/química , Antídotos , Heparina , Dodecilsulfato de Sódio/química , Cátions/química
7.
J Fluoresc ; 34(2): 935-943, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37432582

RESUMO

A naked eye and fluorescence turn-on 1,8-naphtahlimide based chemosensor,1, possessing Schiff base linkage was utilized for the rapid detection of highly toxic triphosgene. The proposed sensor selectively detected triphosgene over various other competitive analytes including phosgene with the detection limit of 6.15 and 1.15 µM measured using UV-vis and fluorescence spectrophotometric techniques, respectively. Colorimetric changes observed in solution phase were processed by image analysis using smartphone leading to on-site and inexpensive determination of triphosgene. Further, solid phase sensing of triphosgene was carried out by 1 loaded PEG membranes and silica gel.


Assuntos
Fosgênio , Fosgênio/análogos & derivados , Fosgênio/análise , Corantes Fluorescentes , Smartphone , Espectrometria de Fluorescência/métodos
8.
ACS Infect Dis ; 9(12): 2560-2571, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936289

RESUMO

We report a maltose-derivatized fluorescence turn-on imaging probe, Mal-Cz, to detect E. coli and Staphylococci. The fluorescence turn-on is achieved through an intramolecular C-H insertion reaction of the perfluoroaryl azide-functionalized carbazole to give a fluorescent product. Confocal fluorescence microscopy confirmed the successful uptake of Mal-Cz by E. coli and Staphylococci upon photoactivation. The Mal-Cz probe could selectively detect E. coli and S. epidermidis in the presence of P. aeruginosa and M. smegmatis without interference from these bacteria. Both the photoactivation and bacteria detection can be accomplished using a hand-held UV lamp at 365 nm, with the limit of detection of 103 CFU/mL by the naked eye. Mal-Cz could also be used to detect E. coli and S. epidermidis spiked in milk by the naked eye under a hand-held UV lamp. The uptake of Mal-Cz requires metabolically active bacteria: the uptake was reduced in stationary phase bacteria and was diminished in bacteria that were killed by heating or treating with antibiotics or sodium azide. The uptake decreased with increasing concentration of added free maltose, indicating that Mal-Cz hijacked the maltose uptake pathways. In E. coli, the maltose transport systems, including maltoporin LamB, maltose binding protein MBP, and the maltose ATP binding cassette (ABC) transporter MalFGK2, are all critical for the transport of Mal-Cz. The uptake was diminished in the deletion mutants ΔLamB, ΔMalE, ΔMalF, and ΔMalK.


Assuntos
Proteínas de Escherichia coli , Maltose , Maltose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluorescência , Transportadores de Cassetes de Ligação de ATP/metabolismo
9.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959657

RESUMO

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.


Assuntos
Corantes Fluorescentes , Ferro , Humanos , Ferro/análise , Corantes Fluorescentes/química , Linhagem Celular , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência/métodos
10.
Bioorg Chem ; 141: 106912, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839142

RESUMO

Immune checkpoint inhibitors targeting PD-L1 lead to challenging patterns of efficacy and toxicity. Herein, by focusing on tracing the molecular biomarker of response to efficacy, we formulated a central hypothesis for the construction of theranostic functional monoclonal antibody incorporation with tracing ability based on fluorescence turn-on and controllable release strategies. Functional atezolizumab was constructed by in situ assembly of both biorthogonal group and controllable release group. The theranostic monoclonal antibodies achieved quantitative monitoring of PD-L1 on cells with different expression levels through biorthogonal light-up fluorescence, followed by the release of atezolizumab in combination with high tumor reduction conditions to promote immune activation. The combination of bio-orthogonal reaction-driven fluorescence turn-on and tumor microenvironment-responsive controllable release afforded theranostic bifunctional monoclonal antibodies for the detection of PD-L1 and combination therapy. Remarkably, these novel theranostics might be used as probes for fluorescent imaging and simultaneously achieving potent antitumor efficacy.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
11.
ChemistryOpen ; 12(9): e202300078, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37705070

RESUMO

Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.


Assuntos
Doença de Alzheimer , Neoplasias Hematológicas , Humanos , Cobre , Doença de Alzheimer/diagnóstico por imagem , Apoptose , Corantes Fluorescentes , Sondas Moleculares
12.
J Photochem Photobiol B ; 245: 112747, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331157

RESUMO

Cysteine is directly associated with a wide range of biological processes. Besides its essential role in protein synthesis, cysteine undergoes a variety of post-translational modifications which modulate several physiological processes. Dysregulated cysteine metabolism is associated with several neurodegenerative disorders. Accordingly, restoring cysteine balance has therapeutic benefits. It is therefore essential to detect the presence of endogenous free cysteine in order to understand different physiological modes of action inside the cell. Here, a carbazole-pyridoxal conjugate system (CPLC) has been developed to detect endogenous free cysteine in the liver and kidney of an adult zebrafish. In consequence, we have also determined the fluorescence intensity statistics of zebrafish kidney and liver images. CPLC interacts in a very fascinating way with two cysteine molecules through chemodosimetric and chemosensing approaches which are conclusively proved by different spectroscopic analyses (UV-vis, fluorescence, NMR) and theoretical calculations (DFT). The detection limit of CPLC towards cysteine is 0.20 µM. Moreover, this preliminary experiment has been done using HuH-7 cell line to check the permeability of CPLC, interaction with cysteine intracellularly, and assessment of the toxicity of CPLC, if any, before performing details in-vivo experiments in zebrafish model.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Fluorescência , Corantes Fluorescentes/química , Cisteína/análise , Fígado , Espectrometria de Fluorescência/métodos , Rim
13.
Anal Bioanal Chem ; 415(17): 3363-3374, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37154935

RESUMO

As the most abundant protein in plasma, human serum albumin plays a vital role in physiological processes, such as maintaining blood osmotic pressure and carrying small-molecule ligands. Since the content of albumin in the human serum can reflect the status of liver and renal function, albumin quantitation is significant in clinical diagnosis. In this work, fluorescence turn-on detection of human serum albumin (HSA) had been performed based on the assembly of gold nanoclusters and bromocresol green. Gold nanoclusters (AuNCs) capped by reduced glutathione (GSH) were assembled with bromocresol green (BCG), and the assembly was used as a fluorescent probe for HSA. After BCG assembling, the fluorescence of gold nanoclusters was nearly quenched. In acidic solution, HSA can selectively bind to BCG on the assembly and recover the fluorescence of the solution. Based on this turn-on fluorescence, ratiometric HSA quantification was realized. Under optimal conditions, HSA detection by the probe possessed a good linear relationship in the range of 0.40-22.50 mg·mL-1, and the detection limit was 0.27 ± 0.04 mg·mL-1 (3σ, n = 3). Common coexisting components in serum and blood proteins did not interfere with the detection of HSA. This method has the advantages of easy manipulation and high sensitivity, and the fluorescent response is insensitive to reaction time.


Assuntos
Nanopartículas Metálicas , Albumina Sérica Humana , Humanos , Verde de Bromocresol , Espectrometria de Fluorescência/métodos , Ouro , Corantes Fluorescentes
14.
Angew Chem Int Ed Engl ; 62(24): e202303500, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37069464

RESUMO

Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.

15.
Food Chem ; 420: 136095, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37075573

RESUMO

A highly structured fluorescent-SERS dual-probe nanocomposites were synthesized for the determination of sulfur-containing gases in water and beer samples. Initially, Au@Ag NPs were prepared by growing the Ag shell on the Au core in situ, modified with surfactant and fabricated with Zn2+. Then, MOF-5-NH2 assembled Au@Ag NPs were obtained through coordination between Zn sites and 2-aminoterephthalic acid. The principle was based on redox reaction between H2S and Au@Ag NPs, and the fluorescence turn-on effects were due to the charge transfer between SO2 and amino groups. The SERS intensity was related to the concentration of H2S (5 âˆ¼ 60 nM), and an ultra-low detection limit of 2.26 nM was achieved. Importantly, the fluorescence performance was applied for SO2 analysis and exhibited good linear response. Moreover, the platform for H2S and SO2 in real samples revealed satisfactory results (95.6 âˆ¼ 101.6% and 99.0 âˆ¼ 104.4%). Therefore, the proposed system offered a precise detection of H2S/SO2 in food/environmental settings.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Ouro/química , Análise Espectral Raman/métodos , Cerveja , Água , Gases
16.
J Fluoresc ; 33(4): 1505-1513, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36763295

RESUMO

Changes in Sn2+ and glycine levels are relevant to many important physiological procedures in human health. However, investigation of their physiological functions is limited because few versatile methods towards Sn2+ and glycine detection have been developed. In this work, a fluorescence turn on-off-on strategy was firstly constructed for rapid and sensitive detection of Sn2+ and glycine through the specific binding between Sn2+ and glycine. Carbon nanodots (CDs) with a quantum yield of 19.5% were synthesized by utilizing inner film of waste eggshell as carbon source and employed as fluorescent probe. In the presence of Sn2+, the fluorescence of CDs was quenched by Sn2+ via the primary inner filter effect (IFE). However, the binding between Sn2+ and glycine prevented the IFE between Sn2+ and CDs, resulting in fluorescence recovery of CDs. Under optimized conditions, the fluorescent response of CDs displayed good linear relationships with the concentrations of Sn2+ in the range of 10-200 µM and 200-5000 µM, and the limit of detection (LOD) was 2.4 µM. For glycine detection, a good linear relationship was obtained in the concentration range of 5-1000 µM with a low LOD down to 0.76 µM. Moreover, the practicability of the assay was also demonstrated by measuring glycine content in human serum samples. This work provides an economical, green and fast method for biological analysis of Sn2+ and glycine.


Assuntos
Carbono , Pontos Quânticos , Animais , Humanos , Carbono/química , Glicina , Casca de Ovo , Corantes Fluorescentes/química , Limite de Detecção , Espectrometria de Fluorescência , Pontos Quânticos/química
17.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770744

RESUMO

The development of complex biological sample-compatible fluorescent molecularly imprinted polymers (MIPs) with improved performances is highly important for their real-world bioanalytical and biomedical applications. Herein, we report on the first hydrophilic "turn-on"-type fluorescent hollow MIP microparticles capable of directly, highly selectively, and rapidly optosensing hippuric acid (HA) in the undiluted human urine samples. These fluorescent hollow MIP microparticles were readily obtained through first the synthesis of core-shell-corona-structured nitrobenzoxadiazole (NBD)-labeled hydrophilic fluorescent MIP microspheres by performing one-pot surface-initiated atom transfer radical polymerization on the preformed "living" silica particles and subsequent removal of their silica core via hydrofluoric acid etching. They showed "turn-on" fluorescence and high optosensing selectivity and sensitivity toward HA in the artificial urine (the limit of detection = 0.097 µM) as well as outstanding photostability and reusability. Particularly, they exhibited much more stable aqueous dispersion ability, significantly faster optosensing kinetics, and higher optosensing sensitivity than their solid counterparts. They were also directly used for quantifying HA in the undiluted human urine with good recoveries (96.0%-102.0%) and high accuracy (RSD ≤ 4.0%), even in the presence of several analogues of HA. Such fluorescent hollow MIP microparticles hold much promise for rapid and accurate HA detection in the clinical diagnostic field.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Polímeros , Corantes , Dióxido de Silício
18.
Mikrochim Acta ; 189(12): 464, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424480

RESUMO

The efficient preparation of ratiometric fluorescent molecularly imprinted polymer (MIP) microspheres that can directly and selectively optosense a herbicide (i.e., 2,4-dichlorophenoxyacetic acid, 2,4-D) in undiluted pure milk is described. The dual fluorescent MIP microparticles were readily obtained through grafting a green 4-nitrobenzo[c][1,2,5]oxadiazole (NBD)-labeled 2,4-D-MIP layer with hydrophilic polymer brushes onto the preformed uniform "living" red CdTe quantum dot (QD)-labeled SiO2 microspheres via one-pot surface-initiated atom transfer radical polymerization (SI-ATRP) in the presence of a polyethylene glycol macro-ATRP initiator. They proved to be highly promising "turn-on"-type fluorescent chemosensors with red CdTe QD (the maximum emission wavelength λe,max around 710 nm) and green NBD (λe,max around 515 nm) as the reference fluorophore and "turn-on"-type responsive fluorophore, respectively. The sensors showed excellent photostability and reusability, high 2,4-D selectivity and sensitivity (the limit of detection = 0.12 µM), and direct visual detection ability (a fluorescent color change occurs from red to blue-green with the concentration of 2,4-D increasing from 0 to 100 µM) in pure bovine milk. The sensors were used for 2,4-D detection with high recoveries (96.0-104.0%) and accuracy (RSD ≤ 4.0%) in pure goat milk at three spiking levels of both 2,4-D and its mixtures with several analogues. This new strategy lays the foundation for efficiently developing diverse complex biological sample-compatible ratiometric fluorescent MIPs highly useful for real-world bioanalyses and diagnostics.


Assuntos
Compostos de Cádmio , Herbicidas , Impressão Molecular , Pontos Quânticos , Polímeros Molecularmente Impressos , Microesferas , Telúrio , Dióxido de Silício , Herbicidas/análise , Ácido 2,4-Diclorofenoxiacético/análise
19.
Anal Chim Acta ; 1221: 340113, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934399

RESUMO

A simple thymine-rich mercury-specific oligonucleotide (G9T24C9) was designed to quickly detect Hg(Ⅱ) via thymine-Hg(II)-thymine (T-Hg(Ⅱ)-T) coordination chemistry by using 4',6-diamidinyl-2-phenylindole (DAPI). When the stable GC-paired stem of the DNA hairpin occurred, DPAI could intercalate into the T-Hg(Ⅱ)-T base pairs as a fluorescent recognizer. As a result, the hairpin structure was able to promote the rapid formation of T-Hg(Ⅱ)-T mismatches in the presence of Hg(Ⅱ), trigger DAPI to recognize T-Hg(Ⅱ)-T as well as TA/AT base pairs and restore fluorescence; moreover, fluorescence increases were not observed when Hg(Ⅱ) was not introduced. This method represents a simple strategy to detect Hg(Ⅱ). Taking advantage of the hairpin structure, the fluorescence intensity of the G9T24C9 hairpin probe was positively correlated with the concentration of Hg(Ⅱ) from 2.87 to 1400 nM (R2 = 0.9968), and the limit of detection (3σ) was as low as 2.87 nM. Furthermore, this probe had high selectivity for Hg(Ⅱ) detection. The probe was applied to real samples of pond water for the detection of Hg(Ⅱ), and a recovery rate from 95.9% to 104.4% was obtained.


Assuntos
Técnicas Biossensoriais , Mercúrio , Pareamento de Bases , Técnicas Biossensoriais/métodos , Mercúrio/química , Oligonucleotídeos/química , Timina/química
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121617, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35850042

RESUMO

Fingerprints are important biological details and play an important role in identifying personal information. To assist the identification of latent fingerprints (LFPs) which are the frequently-met cases in practical application, LFPs are usually made visible/detectable by development (imaging) techniques. In this work, an amphiphilic probe (denoted as HNP) was designed and synthesized. Its amphiphilic nature was confirmed by its single crystal structure and lipid-water partition coefficient (P = 1.38). It showed good solubility in water and bright red AIE (aggregation-induced emission) emission upon visible light excitation (∼410 nm), which satisfied the requirements for LFPs development/imaging. Photophysical parameters (absorption spectrum, emission spectrum, and emission quantum yield), LFPs imaging performance and bio-safety of probe HNP were discussed and reported. It was found that HNP showed efficient AIE effect in aggregated state. After meeting the lipids in LFPs, HNP AIE effect was activated, showing emission "turn-on" phenomenon and LFPs pattern. This mechanism was confirmed by micromorphology analysis. Corresponding dynamics were discussed as well. Good stability and durability were observed for HNP development/imaging. Details down to level 3 were successfully retrieved with high contrast.


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes , Corantes Fluorescentes/química , Luz , Espectrometria de Fluorescência , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA