Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(2): 497-510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905689

RESUMO

The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.


Assuntos
Embolia , Magnoliopsida , Traqueófitas , Estômatos de Plantas/fisiologia , Secas , Folhas de Planta/metabolismo , Ácido Abscísico/metabolismo , Água/metabolismo , Magnoliopsida/fisiologia
2.
Z Naturforsch C J Biosci ; 78(9-10): 353-363, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37402691

RESUMO

Tuliposides (Pos) are major defense-related secondary metabolites in tulip, having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones (tulipalins) by an endogenous Pos-converting enzyme. Based on this enzyme activity, we examined tulip bulb extracts and detected HPLC peaks that disappeared following the reaction by the Pos-converting enzyme. Spectroscopic analyses of the three purified compounds revealed that one of them was a glucose ester-type Pos, while the other two were identified as a glucoside ester-type Pos. These compounds were designated as PosK, L, and M. They were specific to bulbs, with the highest content in the outermost layer, but they were markedly less abundant than PosG, the minor bulb Pos we identified earlier. The study results suggest that tulip bulbs contain at least four minor Pos in addition to the major 6-PosA. Although PosK-M were present in almost all of the tested tulip cultivars, they were detected in only a few wild species, indicative of their potential utility as chemotaxonomic markers in tulip. Identification of PosK-M as 6-PosA derivatives unveils the biosynthetic diversity of Pos, the well-known group of secondary metabolites in tulip.


Assuntos
Tulipa , Tulipa/química , Glucosídeos/química , Glucose , Lactonas , Ésteres
3.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837849

RESUMO

Here we report on metabolites found in a targeted profiling of 'Summit' flower buds for nine years, which could be indicators for the timing of endodormancy release (t1) and beginning of ontogenetic development (t1*). Investigated metabolites included chrysin, arabonic acid, pentose acid, sucrose, abscisic acid (ABA), and abscisic acid glucose ester (ABA-GE). Chrysin and water content showed an almost parallel course between leaf fall and t1*. After 'swollen bud', water content raised from ~60 to ~80% at open cluster, while chrysin content decreased and lost its function as an acetylcholinesterase inhibitor. Both parameters can be suitable indicators for t1*. Arabonic acid showed a clear increase after t1*. Pentose acid would be a suitable metabolite to identify t1 and t1*, but would not allow describing the ecodormancy phase, because of its continuously low value during this time. Sucrose reached a maximum during ecodormancy and showed a significant correlation with air temperature, which confirms its cryoprotective role in this phase. The ABA content showed maximum values during endodormancy and decreased during ecodormancy, reaching 50% of its content t1 at t1*. It appears to be the key metabolite to define the ecodormancy phase. The ABA-GE was present at all stages and phases and was much higher than the ABA content and is a readily available storage pool in cherry buds.

4.
J Agric Food Chem ; 70(16): 4981-4994, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420422

RESUMO

Blue gum (Eucalyptus globulus) is a widely used botanical in the cosmeceutical and food industries. Although blue gum leaves are known for abundant essential oils, their nonvolatile phytochemical constituents and bioactivities remain unclear. Herein, a phytochemical investigation of blue gum leaves led to the identification of eight new monoterpene acid and gallic acid glucose esters (1-4 and 14-17; glubosides A-H, respectively) and 12 known analogues (5-13 and 18-20). Their structures were determined based on extensive spectroscopic data analysis, chemical degradation, and chiral separation. Oleuropeic acid conjugated glucose esters (1-13, 15, 16, 18, and 20) are reported as epimeric mixtures. Compounds 7, 12, 14, 19, and 20 (at 30 µM) inhibited nitrite release in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compounds 7 and 14 (at 3-30 µM) also down-regulated proinflammatory biomarkers, including cytokines (TNF-α, IL-6, and IL-1ß), protein expression (iNOS and COX-2), and transcription factor nuclear translocation (NF-κB) in LPS-stimulated RAW264.7 cells. This work highlights the anti-inflammatory potential of phytochemicals from blue gum leaves, which supports their further development as cosmeceutical and/or nutraceutical products.


Assuntos
Cosmecêuticos , Eucalyptus , Anti-Inflamatórios/química , Cosmecêuticos/análise , Citocinas/metabolismo , Ésteres/análise , Ésteres/farmacologia , Eucalyptus/química , Ácido Gálico/química , Glucose/análise , Lipopolissacarídeos/farmacologia , Monoterpenos/química , NF-kappa B/metabolismo , Compostos Fitoquímicos/análise , Folhas de Planta/química
5.
J Oleo Sci ; 69(7): 737-742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612023

RESUMO

Esterification of D-glucose with oleic- and palmitic acids were carried out in the absence and presence of a biocatalyst, Candida antarctica lipase. The reaction medium was a mixture of dimethyl sulphoxide and tert-butanol (1:4, v/v). The reaction products were analysed by FTIR, 1H-NMR and 13C-NMR, HSQC, and by ESI-MS. Results indicated that the ester products formed were 6-O-glucose oleate and 6-O-glucose palmitate both in the absence and in the presence of the biocatalyst, with yields above 90%.


Assuntos
Biocatálise , Ésteres/síntese química , Glucose/química , Ácido Oleico/síntese química , Ácidos Oleicos/química , Palmitatos/síntese química , Ácidos Palmíticos/química , terc-Butil Álcool/química , Dimetil Sulfóxido/química , Esterificação , Proteínas Fúngicas/química , Lipase/química
7.
Carbohydr Polym ; 232: 115789, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952597

RESUMO

Complex permittivity spectra were obtained herein by performing broadband terahertz (THz) spectroscopy on cellulose, paramylon, and paramylon ester. Absorption peaks observed for cellulose and paramylon at approximately 3 THz are attributed to hydrogen bonds. In addition, a broad absorption peak around 2 THz was observed for all the polymers, demonstrating a general feature of polymer glasses derived from weak interatomic van der Waals forces. The boson peak was observed for cellulose and paramylon ester. The boson peak frequency for cellulose nearly equaled that for glassy glucose-a unit structure of the cellulose polymer. Additionally, the insensitivity of cellulose to the polymerization degree was consistent with recent results obtained via molecular dynamics simulations. In contrast, the boson peak frequency of paramylon ester was markedly smaller than that of cellulose. These results demonstrate the importance of hydrogen bonds as determinants of the boson peak frequency.

8.
Z Naturforsch C J Biosci ; 75(1-2): 7-12, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31639104

RESUMO

6-Tuliposides A (6-PosA) and B (6-PosB) are major defensive secondary metabolites in tulip cultivars (Tulipa gesneriana), having an acyl group at the C-6 position of d-glucose. Although some wild tulip species produce 1,6-diacyl-glucose type of Pos (PosD and PosF), as well as 6-PosA/B, they have not yet been isolated from tulip cultivars. Here, aiming at verifying the presence of PosD and PosF in tulip cultivars, tissue extracts of 25 cultivars were analyzed by high-performance liquid chromatography (HPLC). Although no HPLC peaks for PosD nor PosF were detected in most cultivars, we found two cultivars giving a minute HPLC peak for PosD and the other two cultivars giving that for PosF. PosD and PosF were then purified from petals of cultivar 'Orca' and from pistils of cultivar 'Murasakizuisho', respectively, and their identities were verified by spectroscopic analyses. This is the first report that substantiates the presence of 1,6-diacyl-glucose type of Pos in tulip cultivars.


Assuntos
Glucose/química , Glucosídeos/química , Oxibato de Sódio/análogos & derivados , Tulipa/química , Cromatografia Líquida de Alta Pressão , Flores/química , Glucose/análogos & derivados , Glucosídeos/isolamento & purificação , Glicosídeos/química , Hidroxibutiratos/química , Oxibato de Sódio/química , Oxibato de Sódio/isolamento & purificação
9.
Rice (N Y) ; 12(1): 92, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853664

RESUMO

BACKGROUND: In cereal crop rice, auxin is known as an important class of plant hormone that regulates a plethora of plant growth and development. Glycosylation of auxin is known to be one of the important mechanisms mediating auxin homeostasis. However, the relevant auxin glucosyltransferase (GT) in rice still remains largely unknown. RESULTS: In this study, using known auxin glucosyltransferases from other species as queries, twelve putative auxin UDP-glycosyltransferase (UGT) genes were cloned from rice and the one showing highest sequence similarity, named as OsIAGT1, was expressed as recombinant protein. In vitro enzymatic analysis showed that recombinant OsIAGT1 was capable of catalyzing glucosylation of IAA, IBA and other auxin analogs, and that OsIAGT1 is quite tolerant to a broad range of reaction conditions with peak activity at 30 °Ð¡ and pH 8.0. OsIAGT1 showed favorite activity towards native auxins over artificially synthesized ones. Further study indicated that expression of OsIAGT1 can be upregulated by auxin in rice, and with OsIAGT1 overexpressing lines we confirmed that OsIAGT1 is indeed able to glucosylate IAA in vivo. Consistently, ectopic expression of OsIAGT1 leads to declined endogenous IAA content, as well as upregulated auxin synthesis genes and reduced expression of auxin-responsive genes, which likely leads to the reduced plant stature and root length in OsIAGT1 overexpression lines. CONCLUSION: Our result indicated that OsIAGT1 plays an important role in mediating auxin homeostasis by catalyzing auxin glucosylation, and by which OsIAGT1 regulates growth and development in rice.

10.
J Agric Food Chem ; 67(10): 2848-2855, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30821967

RESUMO

Two versatile UDP-glucosyltransferases, UGT75L25 and UGT75X1, were isolated from Erigeron breviscapus. The enzymes display high sequence identity to flavonoid 7- O-glucosyltransferase from Malus species and cluster to the phylogenetic group L of plant glucosyltransferases, also involved in the formation of hydroxycinnamoyl glucose esters, which are used as bifunctional donors in the glucosylation or acylation of anthocyanins. The enzymes, functionally expressed in Escherichia coli, exhibit broad substrate specificity toward 21 structurally diverse types of phenolic acids, including (hydroxy)cinnamates, vanillic acid, 3-hydroxycoumarin, and 7-hydroxyflavonoids. The catalytic characteristics of UGT75L25 and UGT75X1 were exploited to generate the corresponding acyl-glucose-esters or glucosides with high efficiency. These findings demonstrate the significant potential of acyl-glucose-esters in the further enzymatic synthesis of bioactive anthocyanins.


Assuntos
Erigeron/enzimologia , Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Erigeron/química , Erigeron/genética , Ésteres/química , Ésteres/metabolismo , Glucose/química , Glucose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Especificidade por Substrato
11.
Appl Biochem Biotechnol ; 188(1): 12-28, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30284210

RESUMO

6-Tuliposides A (6-PosA) and B (6-PosB) are major secondary metabolites in tulip (Tulipa gesneriana), having an acyl group at the C-6 position of D-glucose. They serve as precursors of the antimicrobial α-methylene-γ-butyrolactones tulipalins A (PaA) and B (PaB). The conversions of 6-PosA/6-PosB to PaA/PaB are catalyzed by tuliposide-converting enzymes A and B (TCEA and TCEB), respectively. A minor Pos, 1-PosA, which has the acyl group at the C-1 position of D-glucose, has been identified in some wild tulip species, but availability of this compound is limited. Here, by using the TCEs, we established a facile enzymatic process for 1-PosA synthesis from the naturally occurring 1,6-diacyl-glucose type of Pos (PosD and PosF). We first discovered that TCEA and TCEB react preferentially with PosD and PosF, respectively, to form 1-PosA and the corresponding Pa derived from the 6-acyl group, demonstrating that the TCEs specifically acted on the 6-acyl group, but not the 1-acyl group, of the substrates. Using TCEB, 300 mg of PosF was completely converted to 1-PosA and PaB in 10 min at room temperature. Then, 160 mg of 1-PosA (75% molar yield) was purified by column chromatography. This one-step enzymatic process dramatically improves accessibility to 1-PosA.


Assuntos
Enzimas/metabolismo , Glicosídeos/biossíntese , Oxibato de Sódio/análogos & derivados , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catálise , Enzimas/genética , Genes de Plantas , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Tulipa/enzimologia , Tulipa/genética
12.
Plant Cell Environ ; 40(9): 1940-1959, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28620951

RESUMO

The temperature dependence of mesophyll conductance (gm ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf ) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm . However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.​.


Assuntos
Ácido Abscísico/metabolismo , Luz , Células do Mesofilo/fisiologia , Rubus/fisiologia , Rubus/efeitos da radiação , Temperatura , Pressão de Vapor , Respiração Celular/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Células do Mesofilo/efeitos da radiação , Fotossíntese/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Fatores de Tempo
13.
Food Chem ; 214: 556-563, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507510

RESUMO

The synthesis of glucose esters with palmitic acid, lauric acid and hexanoic acid using lipase enzyme was studied and their emulsion functionality in oil-in-water system were compared. Reactions at 3:1M ratio of fatty acids-to-glucose had the highest conversion percentages (over 90% for each of the fatty acid). Initial conversion rate increased as substrate solubility increased. Ester bond formation was confirmed by nuclear magnetic resonance technique that the chemical shifts of glucose H-6 and α-carbon protons of fatty acids in the ester molecules shifted to the higher fields. Contact angle of water on esters' pelleted surface increased as the hydrophobicity increased. Glucose esters' and commercial sucrose esters' functionality as emulsifiers were compared. Glucose esters delayed, but did not prevent coalescence, because the oil droplets diameter doubled during 7days. Sucrose esters prevented coalescence during 7days since the droplets diameter did not have significant change.


Assuntos
Candida/enzimologia , Ésteres/síntese química , Ácidos Graxos/síntese química , Lipase/química , Emulsões , Ésteres/química , Glucose/química , Solubilidade
14.
J Exp Bot ; 67(8): 2299-308, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884604

RESUMO

Ellagic acid/ellagitannins are plant polyphenolic antioxidants that are synthesized from gallic acid and have been associated with a reduced risk of cancer and cardiovascular diseases. Here, we report the identification and characterization of five glycosyltransferases (GTs) from two genera of the Rosaceae family (Fragaria and Rubus; F. × ananassa FaGT2*, FaGT2, FaGT5, F. vesca FvGT2, and R. idaeus RiGT2) that catalyze the formation of 1-O-galloyl-ß-D-glucopyranose (ß-glucogallin) the precursor of ellagitannin biosynthesis. The enzymes showed substrate promiscuity as they formed glucose esters of a variety of (hydroxyl)benzoic and (hydroxyl)cinnamic acids. Determination of kinetic values and site-directed mutagenesis revealed amino acids that affected substrate preference and catalytic activity. Green immature strawberry fruits were identified as the main source of gallic acid, ß-glucogallin, and ellagic acid in accordance with the highest GT2 gene expression levels. Injection of isotopically labeled gallic acid into green fruits of stable transgenic antisense FaGT2 strawberry plants clearly confirmed the in planta function. Our results indicate that GT2 enzymes might contribute to the production of ellagic acid/ellagitannins in strawberry and raspberry, and are useful to develop strawberry fruit with additional health benefits and for the biotechnological production of bioactive polyphenols.


Assuntos
Ácido Elágico/metabolismo , Fragaria/metabolismo , Taninos Hidrolisáveis/metabolismo , Rubus/metabolismo , Sequência de Aminoácidos , Ácido Elágico/química , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Metabolômica , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Uridina Difosfato Glucose/metabolismo
15.
Plant Cell Physiol ; 57(5): 986-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917631

RESUMO

Plant hormones are a group of structurally diverse small compounds that orchestrate the cellular processes governing proper plant growth and environmental adaptation. To understand the details of hormonal activity, we must study not only their inherent activities but also the cross-talk among plant hormones. In addition to their use in agriculture, plant chemical activators, such as probenazole and uniconazole, have made great contributions to understand hormonal cross-talk. However, the use of plant chemical activators is limited due to the lack of activators for certain hormones. For example, to the best of our knowledge, there are only a few chemical activators previously known to stimulate the accumulation of ABA in plants, such as absinazoles and proanthocyanidins. In many cases, antagonistic effects have been examined in experiments using exogenously applied ABA, although these studies did not account for biologically relevant concentrations. In this report, it was found that a natural product, theobroxide, had potential as a plant chemical activator for stimulating the accumulation of ABA. Using theobroxide, the antagonistic effect of ABA against GAs was proved without exogenously applying ABA or using mutant plants. Our results suggest that ABA levels could be chemically controlled to elicit ABA-dependent biological phenomena.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Produtos Biológicos/farmacologia , Cicloexanos/farmacologia , Compostos de Epóxi/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloexanos/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Secas , Compostos de Epóxi/química , Regulação da Expressão Gênica de Plantas , Giberelinas/antagonistas & inibidores , Proteínas de Plantas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
16.
Enzyme Microb Technol ; 75-76: 30-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047913

RESUMO

The novel whole-cell biocatalyst Candida antarctica lipase B displaying-Pichia pastoris (Pp-CALB) is characterized by its low preparation cost and could be an alternative to the commercial immobilized Candida antarctica lipase B (CALB). This study addresses the feasibility of using Pp-CALB in large scale glucose fatty acid esters production. 1,2-O-Isopropylidene-α-D-glucofuranose (IpGlc) was used as the acyl acceptor to overcome the low solubility of glucose in an organic solvent and to avoid the addition of toxic co-solvents. IpGlc significantly improved the Pp-CALB catalyzing esterification efficiency when using long chain fatty acids as the acyl donor. Under the preferred operating conditions (50 °C, 40 g/L molecular sieve dosage and 200 rpm mixing intensity), 60.5% of IpGlc converted to 6-O-myristate-1, 2-O-isopropylidene-α-D-glucofuranose (C14-IpGlc) after a 96-h reaction in a 2-L stirred reactor. In a 5-L pilot scale test, Pp-CALB also showed a similar substrate conversion rate of 55.4% and excellent operational stability. After C14-IpGlc was collected, 70% trifluoroacetic acid was adopted to hydrolyze C14-IpGlc to myristate glucose ester (C14-Glc) with a high yield of 95.3%. In conclusion, Pp-CALB is a powerful biocatalyst available for industrial synthesis, and this study describes an applicable and economical process for the large scale production of myristate glucose ester.


Assuntos
Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Miristatos/metabolismo , Pichia/metabolismo , Biocatálise , Reatores Biológicos/microbiologia , Candida/enzimologia , Esterificação , Estudos de Viabilidade , Proteínas Fúngicas/genética , Glucose/metabolismo , Microbiologia Industrial , Lipase/genética , Monossacarídeos/metabolismo , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Solventes
17.
J Plant Physiol ; 178: 1-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25747288

RESUMO

Levels of the plant hormone abscisic acid (ABA) are maintained in homeostasis by a balance of its biosynthesis, catabolism and conjugation. The detailed molecular and signaling events leading to strict homeostasis are not completely understood in crop plants. In this study, we obtained cDNA of an ABA-inducible, ABA-specific UDP-glucosyltransferase (ABAGT) from the bean plant (Phaseolus vulgaris L.) involved in conjugation of a glucose residue to ABA to form inactive ABA-glucose ester (ABA-GE) to examine its role during development and abiotic stress in bean. The bacterially expressed PvABAGTase enzyme showed ABA-specific glucosylation activity in vitro. A higher level of the PvABAGT transcript was observed in mature leaves, mature flowers, roots, seed coats and embryos as well as upon rehydration following a period of dehydration. Overexpression of 35S::PvABAGT in Arabidopsis showed reduced sensitivity to ABA compared with WT. The transgenic plants showed a high level of ABA-GE without significant decrease in the level of ABA compared with the wild type (WT) during dehydration stress. Upon rehydration, the levels of ABA and phaseic acid (PA) decreased in the WT and the PvABAGT-overexpressing lines with high levels of ABA-GE only in the transgenic plants. Our findings suggest that the PvABAGT gene could play a role in ABA homeostasis during development and stress responses in bean and its overexpression in Arabidopsis did not alter ABA homeostasis during dehydration stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Phaseolus/enzimologia , Phaseolus/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
18.
J Exp Bot ; 65(15): 4191-200, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24803501

RESUMO

The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.


Assuntos
Ácidos Cumáricos/metabolismo , Glicosiltransferases/metabolismo , Hidroxibenzoatos/metabolismo , Populus/enzimologia , Estresse Fisiológico , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética
19.
Ann Bot ; 112(4): 651-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23378522

RESUMO

BACKGROUND AND AIMS: Plant defence metabolites are considered costly due to diversion of energy and nutrients away from growth. These costs combined with changes in resource availability and herbivory throughout plant ontogeny are likely to promote changes in defence metabolites. A comprehensive understanding of plant defence strategy requires measurement of lifetime ontogenetic trajectories--a dynamic component largely overlooked in plant defence theories. This study aimed to compare ontogenetic trajectories of foliar phenolics and terpenoids. Phenolics are predicted to be inexpensive to biosynthesize, whereas expensive terpenoids also require specialized, non-photosynthetic secretory structures to avoid autotoxicity. Based on these predicted costs, it is hypothesized that phenolics would be maximally deployed early in ontogeny, whereas terpenoids would be maximally deployed later, once the costs of biosynthesis and foregone photosynthesis could be overcome by enhanced resource acquisition. METHODS: Leaves were harvested from a family of glasshouse-grown Eucalyptus froggattii seedlings, field-grown saplings and the maternal parent tree, and analysed for total terpenoids and phenolics. KEY RESULTS: Foliar phenolics were highest in young seedlings and lowest in the adult tree. Indeed the ratio of total phenolics to total terpenoids decreased in a significantly exponential manner with plant ontogeny. Most individual terpene constituents increased with plant ontogeny, but some mono- and sesquiterpenes remained relatively constant or even decreased in concentration as plants aged. CONCLUSIONS: Plant ontogeny can influence different foliar defence metabolites in directionally opposite ways, and the contrasting trajectories support our hypothesis that phenolics would be maximally deployed earlier than terpenoids. The results highlight the importance of examining ontogenetic trajectories of defence traits when developing and testing theories of plant defence, and illustrate an advantage of concurrently studying multiple defences.


Assuntos
Eucalyptus/metabolismo , Fenóis/metabolismo , Terpenos/metabolismo , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA