Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139063

RESUMO

Managing metastasis at the early stage and detecting and treating submillimeter tumors at early metastasis are crucial for improving cancer prognosis. Angiogenesis is a critical target for developing drugs to detect and inhibit submillimeter tumor growth; however, drug development remains challenging because there are no suitable models for observing the submillimeter tumor mass and the surrounding blood vessels in vivo. We have established a xenograft subcutaneous submillimeter tumor mouse model with HT-29-RFP by transplanting a single spheroid grown on radiation-crosslinked gelatin hydrogel microwells. Here, we developed an in vivo dual-observation method to observe the submillimeter tumor mass and tumor-surface blood vessels using this model. RFP was detected to observe the tumor mass, and a fluorescent angiography agent FITC-dextran was administered to observe blood vessels via stereoscopic fluorescence microscopy. The anti-angiogenesis agent regorafenib was used to confirm the usefulness of this method. This method effectively detected the submillimeter tumor mass and tumor-surface blood vessels in vivo. Regorafenib treatment revealed tumor growth inhibition and angiogenesis downregulation with reduced vascular extremities, segments, and meshes. Further, we confirmed that tumor-surface blood vessel areas monitored using in vivo dual-observation correlated with intratumoral blood vessel areas observed via fluorescence microscopy with frozen sections. In conclusion, this method would be useful in developing anti-angiogenesis agents against submillimeter tumors.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Camundongos , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/diagnóstico , Proteínas de Fluorescência Verde , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia
2.
Electrophoresis ; 38(24): 3161-3167, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28815632

RESUMO

We developed the photocrosslinkable hydrogel microwell arrays for uniform-sized neurosphere-mediated motoneuron differentiation. Neural stem cells (NSCs) were obtained from embryonic cerebral cortex and spinal cord. To generate uniform-sized neurospheres in a homogeneous manner, the dissociated cells were cultured in the hydrogel microwell arrays for 3 days. Uniform-sized neurospheres harvested from microwell arrays were replated into laminin-coated substrate. In parallel, uniform-sized neurospheres cultured in microwell arrays were encapsulated by photocrosslinkable gelatin methacrylate hydrogels in a three-dimensional manner. We demonstrated the effect of hydrogel microwell sizes (e.g., 50, 100, 150 µm in diameter) on motoneuron differentiation, showing that the largest uniform-sized neurospheres derived from embryonic spinal cord efficiently differentiated into motoneurons. Therefore, this hydrogel microwell array could be a powerful array to regulate the uniform-sized neurosphere-mediated motoneuron differentiation.


Assuntos
Diferenciação Celular/fisiologia , Neurônios Motores , Células-Tronco Neurais , Análise Serial de Tecidos/métodos , Animais , Córtex Cerebral/citologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Camundongos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA