Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Theriogenology ; 229: 147-157, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39178616

RESUMO

Calcium ions (Ca2+) regulate cell proliferation and differentiation and participate in various physiological activities of cells. The calcium transfer protein inositol 1,4,5-triphosphate receptor (IP3R), located between the endoplasmic reticulum (ER) and mitochondria, plays an important role in regulating Ca2+ levels. However, the mechanism by which IP3R1 affects porcine meiotic progression and embryonic development remains unclear. We established a model in porcine oocytes using siRNA-mediated knockdown of IP3R1 to investigate the effects of IP3R1 on porcine oocyte meiotic progression and embryonic development. The results indicated that a decrease in IP3R1 expression significantly enhanced the interaction between the ER and mitochondria. Additionally, the interaction between the ER and the mitochondrial Ca2+ ([Ca2+]m) transport network protein IP3R1-GRP75-VDAC1 was disrupted. The results of the Duolink II in situ proximity ligation assay (PLA) revealed a weakened pairwise interaction between IP3R1-GRP75 and VDAC1 and a significantly increased interaction between GRP75 and VDAC1 after IP3R1 interference, resulting in the accumulation of large amounts of [Ca2+]m. These changes led to mitochondrial oxidative stress, increased the levels of reactive oxygen species (ROS) and reduced ATP production, which hindered the maturation and late development of porcine oocytes and induced apoptosis. Nevertheless, after treat with [Ca2+]m chelating agent ruthenium red (RR) or ROS scavenger N-acetylcysteine (NAC), the oocytes developmental abnormalities, oxidative stress and apoptosis caused by Ca2+ overload were improved. In conclusion, our results indicated IP3R1 is required for meiotic progression and embryonic development by regulating mitochondrial calcium and oxidative damage.

2.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953724

RESUMO

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Assuntos
Apoptose , Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Neoplasias Meníngeas , Meningioma , Animais , Humanos , Camundongos , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neurofibromina 2
3.
Int J Chron Obstruct Pulmon Dis ; 19: 1635-1647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045541

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is caused by exposure to noxious external particles, air pollution, and the inhalation of cigarette smoke. Airway mucus hypersecretion particularly mucin5AC (MUC5AC), is a crucial pathological feature of COPD and is associated with its initiation and progression. In this study, we aimed to investigate the effects of cigarette smoke extract (CSE) on MUC5AC expression, particularly the mechanisms by which reactive oxygen species (ROS) induce MUC5AC expression. Methods: The effects of CSE on the expression of MUC5AC and mucin5B (MUC5B) were investigated in vitro in Calu-3 cells. MUC5AC and MUC5B expression levels were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). Total cellular levels of ROS and Ca2+ were determined using DCFH-DA and Fluo-4 AM. Subsequently, the expression levels of IP3R, IRE1α, p-IRE1α and XBP1s were measured by Western blotting. Gene silencing was achieved by using small-interfering RNAs. Results: Our findings revealed that exposure to CSE increased MUC5AC levels and upregulated ROS, IP3R/Ca2+ and unfolded protein response (UPR)-associated factors. In addition, knockdown of IP3R using siRNA decreased CSE-induced Ca2+ production, UPR-associated factors, and MUC5AC expression. Furthermore, 10 mM N-acetyl-l-cysteine (NAC) treatment suppressed the effects of CSE, including ROS generation, IP3R/ Ca2+, UPR activation, and MUC5AC overexpression. Conclusion: Our results suggest that ROS regulates CSE-induced UPR and MUC5AC overexpression through IP3R/ Ca2+ signaling. Additionally, we identified NAC as a promising therapeutic agent for mitigating CSE-induced MUC5AC overexpression.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Mucina-5AC , Mucina-5B , Espécies Reativas de Oxigênio , Fumaça , Mucina-5AC/metabolismo , Mucina-5AC/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Mucina-5B/metabolismo , Mucina-5B/genética , Sinalização do Cálcio/efeitos dos fármacos , Regulação para Cima , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Linhagem Celular Tumoral , Nicotiana/efeitos adversos , Interferência de RNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Acetilcisteína/farmacologia , Fumar Cigarros/efeitos adversos , Cálcio/metabolismo , Proteína 1 de Ligação a X-Box , Endorribonucleases
4.
Exp Eye Res ; 245: 109965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851477

RESUMO

Mitochondria-associated ER membranes (MAMs) are contact sites that enable bidirectional communication between the ER (endoplasmic reticulum) and mitochondria, including the transfer of Ca2+ signals. MAMs are essential for mitochondrial function and cellular energy metabolism. However, unrestrained Ca2+ transfer to the mitochondria can lead to mitochondria-dependent apoptosis. IP3R2 (Inositol 1,4,5-trisphosphate receptor 2) is an important intracellular Ca2+ channel. This study investigated the contribution of IP3R2-MAMs to hypoxia-induced apoptosis in photoreceptor cells. A photoreceptor hypoxia model was established by subretinal injection of hyaluronic acid (1%) in C57BL/6 mice and 1% O2 treatment in 661W cells. Transmission electron microscopy (TEM), ER-mitochondria colocalization, and the MAM reporter were utilized to evaluate MAM alterations. Cell apoptosis and mitochondrial homeostasis were evaluated using immunofluorescence (IF), flow cytometry, western blotting (WB), and ATP assays. SiRNA transfection was employed to silence IP3R2 in 661W cells. Upon hypoxia induction, MAMs were significantly increased in photoreceptors both in vivo and in vitro. This was accompanied by the activation of mitochondrial apoptosis and disruption of mitochondrial homeostasis. Elevated MAM-enriched IP3R2 protein levels induced by hypoxic injury led to mitochondrial calcium overload and subsequent photoreceptor apoptosis. Notably, IP3R2 knockdown not only improved mitochondrial morphology but also restored mitochondrial function in photoreceptors by limiting MAM formation and thereby attenuating mitochondrial calcium overload under hypoxia. Our results suggest that IP3R2-MAM-mediated mitochondrial calcium overload plays a critical role in mitochondrial dyshomeostasis, ultimately contributing to photoreceptor cell death. Targeting MAM constitutive proteins might provide an option for a therapeutic approach to mitigate photoreceptor death in retinal detachment.


Assuntos
Apoptose , Cálcio , Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Mitocôndrias , Animais , Camundongos , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Hipóxia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia
5.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884723

RESUMO

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Humanos , Contração Miocárdica/fisiologia , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Metabolismo Energético , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Acoplamento Excitação-Contração/fisiologia
6.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777097

RESUMO

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Assuntos
Macrófagos Alveolares , Material Particulado , Proteínas RGS , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Proteínas RGS/genética , Proteínas RGS/metabolismo , Material Particulado/toxicidade , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ratos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Bovinos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Linhagem Celular , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Apoptose/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
7.
Adv Biomed Res ; 13: 24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808320

RESUMO

Background: Inositol 1,4,5-trisphosphate receptor (IP3R), a critical calcium ion (Ca2+) regulator, plays a vital role in breast cancer (BC) metabolism. Dysregulated IP3R in BC cells can drive abnormal growth or cell death. Estradiol increases IP3R type 3 (IP3R3) levels in BC, promoting cell proliferation and metabolic changes, including enhanced pyruvate dehydrogenase (PDH) activity, which, when reduced, leads to cell apoptosis. The study silenced IP3R3 to assess its impact on PDH. Materials and Methods: The study used IP3R3 small interfering RNA (siRNA) to target Michigan Cancer Foundation-7 (MCF-7) and MDA-MB-231 cell lines. Transfection success was confirmed by flow cytometry. Cell viability and gene silencing were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and real-time quantitative polymerase chain reaction (PCR) assays. Protein expression and cellular activity were analyzed through western blotting and PDH activity measurement. Results: Transfecting MCF-7 and MDA-MB-231 cells with IP3R3 siRNA achieved a 65% transfection rate without significant toxicity. IP3R3 gene silencing effectively reduced IP3R3 messenger RNA (mRNA) and protein levels in both cell lines, leading to decreased PDH enzyme activity, especially in MDA-MB-231 cells. Conclusion: The study highlights a link between high IP3R3 gene silencing and reduced PDH activity, with higher IP3R3 expression in estrogen-independent (MDA-MB-231) compared to estrogen-dependent (MCF-7) cell lines. This suggests a potential impact on BC metabolism and tumor growth via regulation of PDH activity.

8.
J Nutr ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641205

RESUMO

BACKGROUND: The mitochondria-associated endoplasmic reticulum membrane (MAM) is the central hub for endoplasmic reticulum and mitochondria functional communication. It plays a crucial role in hepatic lipid homeostasis. However, even though MAM has been acknowledged to be rich in enzymes that contribute to lipid biosynthesis, no study has yet investigated the exact role of MAM on hepatic neutral lipid synthesis. OBJECTIVES: To address these gaps, this study investigated the systemic control mechanisms of MAM on neutral lipids synthesis by recruiting seipin, focusing on the role of the inositol trisphosphate receptor-1,4,5(Ip3r)-75 kDa glucose-regulated protein (Grp75)-voltage-dependent anion channel (Vdac) complex and their relevant Ca2+ signaling in this process. METHODS: To this end, a model animal for lipid metabolism, yellow catfish (Pelteobagrus fulvidraco), were fed 6 different diets containing a range of palmitic acid (PA) concentrations from 0-150 g/kg in vivo for 10 wk. In vitro, experiments were also conducted to intercept the MAM-mediated Ca2+ signaling in isolated hepatocytes by transfecting them with si-mitochondrial calcium uniporter (mcu). Because mcu was placed in the inner mitochondrial membrane (IMM), si-mcu cannot disrupt MAM's structural integrity. RESULTS: 1. Hepatocellular MAM subproteome analysis indicated excessive dietary PA intake enhanced hepatic MAM structure joined by activating Ip3r-Grp75-Vdac complexes. 2. Dietary PA intake induced hepatic neutral lipid accumulation through MAM recruiting Seipin, which activated lipid droplet biogenesis. Our findings also revealed a previously unidentified mechanism whereby MAM-recruited seipin and controlled hepatic lipid homeostasis, depending on Ip3r-Grp75-Vdac-controlled Ca2+ signaling and not only MAM's structural integrity. CONCLUSIONS: These results offer a novel insight into the MAM-recruited seipin in controlling hepatic lipid synthesis in a MAM structural integrity-dependent and Ca2+ signaling-dependent manner, highlighting the critical contribution of MAM in maintaining hepatic neutral lipid homeostasis.

9.
Eur J Pharmacol ; 973: 176592, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642666

RESUMO

Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Although current modalities offer a wide variety of therapy choices, head and neck carcinoma has poor prognosis due to its diagnosis at later stages and development of resistance to current therapeutic tools. In the current study, we aimed at exploring the roles of miR-200c-3p during head and neck carcinogenesis and acquisition of taxol resistance. We analyzed miR-200c-3p levels in HNC clinical samples and cell lines using quantitative real-time polymerase chain reaction and evaluated the effects of differential miR-200c-3p expression on cancer-related cellular phenotypes using in-vitro tools. We identified and characterized a direct target of miR-200c-3p using in-silico tools, luciferase and various in-vitro assays. We investigated potential involvement of miR-200c-3p/SSFA2 axis in taxol resistance in-vitro. We found miR-200c-3p expression as significantly downregulated in both HNC tissues and cells compared to corresponding controls. Ectopic miR-200c-3p expression in HNC cells significantly inhibited cancer-related phenotypes such as viability, clonogenicity, migration, and invasion. We, then, identified SSFA2 as a direct target of miR-200c-3p and demonstrated that overexpression of SSFA2 induced malignant phenotypes in HNC cells. Furthermore, we found reduced miR-200c-3p expression in parallel with overexpression of SSFA2 in taxol resistant HNC cells compared to parental sensitive cells. Both involved in intracellular cytoskeleton remodeling, we found that SSFA2 works collaboratively with IP3R1 to modulate resistance to taxol in HNC cells. When considered collectively, our results showed that miR-200c-3p acts as a tumor suppressor microRNA and targets SSFA2/IP3R1 axis to sensitize HNC cells to taxol.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Receptores de Inositol 1,4,5-Trifosfato , MicroRNAs , Paclitaxel , Humanos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Paclitaxel/farmacologia
10.
Trends Cell Biol ; 34(5): 352-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494377

RESUMO

Calcium (Ca2+) plays a pivotal role in cellular signal transmission by triggering downstream signaling in response to an increase in the cytosolic Ca2+ concentration. Intracellular organelles serve as Ca2+ stores that induce differently shaped Ca2+ signals. We discuss a study by Yuan et al. that investigated the interplay between the lysosomal two-pore channel 2 (TPC2) and endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptors (IP3Rs).


Assuntos
Canais de Cálcio , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Humanos , Animais , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo
11.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451235

RESUMO

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Assuntos
Canais Iônicos , Humanos , Animais , Canais Iônicos/metabolismo , Membranas Intracelulares/metabolismo , Organelas/metabolismo , Organelas/fisiologia
12.
Cell Commun Signal ; 22(1): 133, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368370

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS: Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS: Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS: For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.


Assuntos
Proteínas de Ligação ao Cálcio , Neoplasias Pancreáticas , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Membranas Associadas à Mitocôndria , Neoplasias Pancreáticas/patologia
13.
Mitochondrial Commun ; 2: 14-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347884

RESUMO

While it has been shown that Ca2+ dynamics at the ER membrane is essential for the initiation of certain types of autophagy such as starvation-induced autophagy, how mitochondrial Ca2+ transport changes during the first stage of autophagy is not systemically characterized. An investigation of mitochondrial Ca2+ dynamics during autophagy initiation may help us determine the relationship between autophagy and mitochondrial Ca2+ fluxes. Here we examine acute mitochondrial and ER calcium responses to a panel of autophagy inducers in different cell types. Mitochondrial Ca2+ transport and Ca2+ transients at the ER membrane are triggered by different autophagy inducers. The mitophagy-inducer-initiated mitochondrial Ca2+ uptake relies on mitochondrial calcium uniporter and may decelerate the following mitophagy. In neurons derived from a Parkinson's patient, mitophagy-inducer-triggered mitochondrial Ca2+ influx is faster, which may slow the ensuing mitophagy.

14.
Cell Mol Biol Lett ; 29(1): 22, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308199

RESUMO

INTRODUCTION: There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS: Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS: Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 µmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION: Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Melatonina , Animais , Ratos , Cálcio/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Ratos Sprague-Dawley
15.
J Cell Physiol ; 239(4): e31190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219075

RESUMO

Selenium (Se), as one of the essential trace elements, plays an anti-inflammatory, antioxidation, and immune-enhancing effect in the body. In addition, Se can also improve nervous system damage induced by various factors. Earlier studies have described the important role of mitochondrial dynamic imbalance in lipopolysaccharide (LPS)-induced nerve injury. The inositol 1,4,5-triphosphate receptor (IP3R)/glucose-regulated protein 75 (GRP75)/voltage-dependent anion channel 1 (VDAC1) complex is considered to be the key to regulating mitochondrial dynamics. However, it is not clear whether Selenomethionine (SeMet) has any influence on the IP3R/GRP75/VDAC1 complex. Therefore, the aim of this investigation was to determine whether SeMet can alleviate LPS-induced brain damage and to elucidate the function of the IP3R/GRP75/VDAC1 complex in it. We established SeMet and/or LPS exposure models in vivo and in vitro using laying hens and primary chicken nerve cells. We noticed that SeMet reversed endoplasmic reticulum stress (ERS) and the imbalance in mitochondrial dynamics and significantly prevented the occurrence of neuronal apoptosis. We made this finding by morphological observation of the brain tissue of laying hens and the detection of related genes such as ERS, the IP3R/GRP75/VDAC1 complex, calcium signal (Ca2+), mitochondrial dynamics, and apoptosis. Other than that, we also discovered that the IP3R/GRP75/VDAC1 complex was crucial in controlling Ca2+ transport between the endoplasmic reticulum and the mitochondrion when SeMet functions as a neuroprotective agent. In summary, our results revealed the specific mechanism by which SeMet alleviated LPS-induced neuronal apoptosis for the first time. As a consequence, SeMet has great potential in the treatment and prevention of neurological illnesses (like neurodegenerative diseases).


Assuntos
Apoptose , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana , Dinâmica Mitocondrial , Neurônios , Selenometionina , Animais , Feminino , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Galinhas , Lipopolissacarídeos/farmacologia , Selenometionina/farmacologia , Canal de Ânion 1 Dependente de Voltagem/genética , Neurônios/efeitos dos fármacos
16.
Int J Biol Sci ; 20(3): 831-847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250153

RESUMO

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas Mitocondriais , Sirtuína 3 , Animais , Camundongos , Cálcio , Cardiomegalia/genética , Homeostase , Mitocôndrias , Sirtuína 3/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas Mitocondriais/genética
17.
J Biomol Struct Dyn ; 42(4): 2170-2196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37070253

RESUMO

Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.


Assuntos
Cálcio , Neoplasias , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Isoformas de Proteínas/metabolismo , Ligantes , Neoplasias/tratamento farmacológico
18.
Environ Toxicol ; 39(1): 172-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676969

RESUMO

Excess molybdenum (Mo) is harmful to animals, but its nephrotoxicity has not been comprehensively explained. To appraise the influences of excess Mo on Ca homeostasis and apoptosis via PLC/IP3 /IP3 R axis, primary duck renal tubular epithelial cells were exposed to 480 µM and 960 µM Mo, and joint of 960 µM Mo and 10 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h), respectively. The data revealed that the increment of [Ca2+ ]c induced by Mo mainly originated from intracellular Ca storage. Mo exposure reduced [Ca2+ ]ER , elevated [Ca2+ ]mit , [Ca2+ ]c , and the expression of Ca homeostasis-related factors (Calpain, CaN, CRT, GRP94, GRP78 and CaMKII). 2-APB could effectively reverse subcellular Ca2+ redistribution by inhibiting IP3 R, which confirmed that [Ca2+ ]c overload induced by Mo originated from ER. Additionally, PLC inhibitor U-73122 remarkably mitigated the change, and dramatically reduced the number of apoptotic cells, the expression of Bak-1, Bax, cleaved-Caspase-3/Caspase-3, and notably increased the expression of Bcl-xL, Bcl-2, and Bcl-2/Bax ratio. Overall, the results confirmed that the Ca2+ liberation of ER via PLC/IP3 /IP3 R axis was the main cause of [Ca2+ ]c overload, and then stimulated apoptosis in duck renal tubular epithelial cells.


Assuntos
Patos , Molibdênio , Animais , Patos/metabolismo , Molibdênio/toxicidade , Molibdênio/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Células Epiteliais , Apoptose , Cálcio/metabolismo
19.
J Physiol ; 602(8): 1463-1474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36691983

RESUMO

Key components of endoplasmic reticulum (ER) Ca2+ release and store-operated Ca2+ entry (SOCE) are likely expressed in all metazoan cells. Due to the complexity of canonical Ca2+ entry mechanisms in neurons, the functional significance of ER-Ca2+ release and SOCE has been difficult to identify and establish. In this review we present evidence of how these two related mechanisms of Ca2+ signalling impact multiple aspects of neuronal physiology and discuss their interaction with the better understood classes of ion channels that are gated by either voltage changes or extracellular ligands in neurons. Given how a small imbalance in Ca2+ homeostasis can have strongly detrimental effects on neurons, leading to cell death, it is essential that neuronal SOCE is carefully regulated. We go on to discuss some mechanisms of SOCE regulation that have been identified in Drosophila and mammalian neurons. These include specific splice variants of stromal interaction molecules, different classes of membrane-interacting proteins and an ER-Ca2+ channel. So far these appear distinct from the mechanisms of SOCE regulation identified in non-excitable cells. Finally, we touch upon the significance of these studies in the context of certain human neurodegenerative diseases.

20.
Cell Calcium ; 117: 102823, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976974

RESUMO

There have been in the last three decades repeated publications indicating that the inositol 1,4,5-trisphosphate receptor (IP3R) is regulated not only by cytosolic Ca2+ but also by intraluminal Ca2+. Although most studies indicated that a decreasing intraluminal Ca2+ level led to an inhibition of the IP3R, a number of publications reported exactly the opposite effect, i.e. an inhibition of the IP3R by high intraluminal Ca2+ levels. Although intraluminal Ca2+-binding sites on the IP3Rs were reported, a regulatory role for them was not demonstrated. It is also well known that the IP3R is regulated by a vast array of associated proteins, but only relatively recently proteins were identified that can be linked to the regulation of the IP3R by intraluminal Ca2+. The first to be reported was annexin A1 that is proposed to associate with the second intraluminal loop of the IP3R at high intraluminal Ca2+ levels and to inhibit the IP3R. More recently, ERdj5/PDIA19 reductase was described to reduce an intraluminal disulfide bridge of IP3R1 only at low intraluminal Ca2+ levels and thereby to inhibit the IP3R. Annexin A1 and ERdj5/PDIA19 can therefore explain most of the experimental results on the regulation of the IP3R by intraluminal Ca2+. Further studies are needed to provide a fuller understanding of the regulation of the IP3R from the intraluminal side. These findings underscore the importance of the state of the endoplasmic reticulum in the control of IP3R activity.


Assuntos
Anexina A1 , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anexina A1/metabolismo , Sinalização do Cálcio , Sítios de Ligação , Oxirredução , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA