Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 347: 199431, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969013

RESUMO

Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-ß production and signaling. In particular NS4A was very effective at suppressing IFN-ß production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-ß production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Flavivirus , Helicase IFIH1 Induzida por Interferon , Interferon beta , Transdução de Sinais , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Flavivirus/imunologia , Flavivirus/genética , Flavivirus/fisiologia , Interferon beta/genética , Interferon beta/imunologia , Interferon beta/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/imunologia , Células HEK293 , Evasão da Resposta Imune , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Ligação Proteica , Imunidade Inata , Animais
2.
Virus Res ; 343: 199342, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
3.
Methods Mol Biol ; 1604: 217-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986837

RESUMO

The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-ß promoter-mediated luciferase reporter assay.


Assuntos
Arenavirus/metabolismo , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Arenavirus/genética , Interferon beta/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Vírus Pichinde/genética , Vírus Pichinde/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Liberação de Vírus/genética , Replicação Viral/genética
4.
Virology ; 510: 111-126, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715653

RESUMO

Porcine epidemic diarrhea virus emerged in the US is known to suppress the type I interferons response during infection. In the present study using porcine epithelial cells, we showed that PEDV inhibited both NF-κB and proinflammatory cytokines. PEDV blocked the p65 activation in infected cells and suppressed the PRD II-mediated NF-κB activity. Of the total of 22 viral proteins, nine proteins were identified as NF-κB antagonists, and nsp1 was the most potent suppressor of proinflammatory cytokines. Nsp1 interfered the phosphorylation and degradation of IκBα, and thus blocked the p65 activation. Mutational studies demonstrated the essential requirements of the conserved residues of nsp1 for NF-κB suppression. Our study showed that PEDV inhibited NF-κB activity and nsp1 was a potent NF-κB antagonist for suppression of both IFN and early production of pro-inflammatory cytokines.


Assuntos
Evasão da Resposta Imune , NF-kappa B/antagonistas & inibidores , Vírus da Diarreia Epidêmica Suína/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Análise Mutacional de DNA , Células Epiteliais/imunologia , Células Epiteliais/virologia , Suínos , Proteínas não Estruturais Virais/genética
5.
Virology ; 505: 42-55, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28235682

RESUMO

Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1ß was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1ß with the consensus sequence of 126-LQxxLxxxGL-135. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1ß-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1ß and SHFV-nsp1ß. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Chlorocebus aethiops , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/imunologia , Interferons/biossíntese , Interferons/metabolismo , Camundongos , Transdução de Sinais , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA