Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Sci Rep ; 14(1): 16700, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030223

RESUMO

This study presents a comprehensive analysis of mineralization exploration in the Egyptian Eastern Desert (ED), one of the most sought-after areas for those interested in mining industry, by integrating Landsat-9 images and geophysical magnetic data. Employing advanced techniques like Principal Component (PC) analysis, Minimum Noise Fraction (MNf) transform, and Band-Ratio (B-Ratio), the research focuses on mapping lithological units, hydrothermal alteration regions, and structural elements. Composite images derived from specific PC, and MNf bands, and B-Ratio exhibit superior lithological unit identification. The findings emphasize that there are significant variations in the types of rocks extend from the southern to the northern parts of the ED. Hydrothermal alteration mapping, guided by B-Ratio results, aids qualitative lithological discrimination. A novel false color composite image optimizes Landsat-9 B-Ratios, enhancing rock unit discrimination. Correlation analyses reveal associations between mineralization types and major lithological units, while exploration of the magnetic anomaly map highlights its role in correlating mineralization sites. Structural features, analyzed through Center for Exploration-Targeting Grid-Analysis (CET-GA) and Center for Exploration-Targeting Porphyry-Analysis (CET-GA) with Tilt Derivative of RTP (TDR) techniques, contribute to a robust association between regions with medium to high structural density and porphyry intrusions and mineralization. The study significantly supports the advanced exploration geoscience, providing insights into the geological structures and dynamics governing mineralization in the Egyptian ED.

2.
Sci Rep ; 14(1): 16706, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030294

RESUMO

Paramos, unique and biodiverse ecosystems found solely in the high mountain regions of the tropics, are under threat. Despite their crucial role as primary water sources and significant carbon repositories in Colombia, they are deteriorating rapidly and garner less attention than other vulnerable ecosystems like the Amazon rainforest. Their fertile soil and unique climate make them prime locations for agriculture and cattle grazing, often coinciding with economically critical deposits such as coal which has led to a steady decline in paramo area. Anthropic impact was evaluated using multispectral images from Landsat and Sentinel over 37 years, on the Guerrero and Rabanal paramos in central Colombia which have experienced rapid expansion of mining and agriculture. Our analysis revealed that since 1984, the Rabanal and Guerrero paramos have lost 47.96% and 59.96% of their native vegetation respectively, replaced primarily by crops, pastures, and planted forests. We detected alterations in the spectral signatures of native vegetation near coal coking ovens, indicating a deterioration of paramo health and potential impact on ecosystem services. Consequently, human activity is reducing the extent of paramos and their efficiency as water sources and carbon sinks, potentially leading to severe regional and even global consequences.

3.
Plants (Basel) ; 13(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999574

RESUMO

In the Mexican Caribbean, environmental changes, hydrometeorological events, and anthropogenic activities promote dynamism in the coastal vegetation cover associated with the dune; however, their pace and magnitude remain uncertain. Using Landsat 7 imagery, spatial and temporal changes in coastal dune vegetation were estimated for the 2011-2020 period in the Sian Ka'an Biosphere Reserve. The SAVI index revealed cover changes at different magnitudes and paces at the biannual, seasonal, and monthly timeframes. Climatic seasons had a significant influence on vegetation cover, with increases in cover during northerlies (SAVI: p = 0.000), while the topographic profile of the dune was relevant for structure. Distance-based multiple regressions and redundancy analysis showed that temperature had a significant effect (p < 0.05) on SAVI patterns, whereas precipitation showed little influence (p > 0.05). The Mann-Kendall tendency test indicated high dynamism in vegetation loss and recovery with no defined patterns, mostly associated with anthropogenic disturbance. High-density vegetation such as mangroves, palm trees, and shrubs was the most drastically affected, although a reduction in bare soil was also recorded. This study demonstrated that hydrometeorological events and climate variability in the long term have little influence on vegetation dynamism. Lastly, it was observed that anthropogenic activities promoted vegetation loss and transitions; however, the latter were also linked to recoveries in areas with pristine environments, relevant for tourism.

4.
J Imaging ; 10(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921620

RESUMO

Accurate and comparable annual mapping is critical to understanding changing vegetation distribution and informing land use planning and management. A U-Net convolutional neural network (CNN) model was used to map natural vegetation and forest types based on annual Landsat geomedian reflectance composite images for a 500 km × 500 km study area in southeastern Australia. The CNN was developed using 2018 imagery. Label data were a ten-class natural vegetation and forest classification (i.e., Acacia, Callitris, Casuarina, Eucalyptus, Grassland, Mangrove, Melaleuca, Plantation, Rainforest and Non-Forest) derived by combining current best-available regional-scale maps of Australian forest types, natural vegetation and land use. The best CNN generated using six Landsat geomedian bands as input produced better results than a pixel-based random forest algorithm, with higher overall accuracy (OA) and weighted mean F1 score for all vegetation classes (93 vs. 87% in both cases) and a higher Kappa score (86 vs. 74%). The trained CNN was used to generate annual vegetation maps for 2000-2019 and evaluated for an independent test area of 100 km × 100 km using statistics describing accuracy regarding the label data and temporal stability. Seventy-six percent of pixels did not change over the 20 years (2000-2019), and year-on-year results were highly correlated (94-97% OA). The accuracy of the CNN model was further verified for the study area using 3456 independent vegetation survey plots where the species of interest had ≥ 50% crown cover. The CNN showed an 81% OA compared with the plot data. The model accuracy was also higher than the label data (76%), which suggests that imperfect training data may not be a major obstacle to CNN-based mapping. Applying the CNN to other regions would help to test the spatial transferability of these techniques and whether they can support the automated production of accurate and comparable annual maps of natural vegetation and forest types required for national reporting.

5.
Sci Rep ; 14(1): 14761, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926393

RESUMO

The main objective of this study was to use deep learning, and convolutional neural networks (CNN), integrated with field geology to identify distinct lithological units. The Samadia-Tunduba region of the South Eastern Desert of Egypt was mapped geologically for the first time thanks to the use of processed developed CNN algorithms using Landsat 9 OLI-2, which were further enhanced by geological fieldwork, spectral measurements of field samples, and petrographic examination. According to previously published papers, a significant difference was observed in the distribution of rocks and their boundaries, as well as the previously published geological maps that were not accurately compatible with the nature of the area. The many lithologic units in the region are refined using principal component analysis, color ratio composites, and false-color composites. These techniques demonstrated the ability to distinguish between various igneous and metamorphic rock types, especially metavolcanics, metasediments, granodiorite, and biotite monzogranite. The Key structural trends, lithological units, and wadis affecting the area under study are improved by the principal component analysis approach (PC 3, 2, 1), (PC 2, 3, 4), (PC 4, 3, 2), (PC 5, 4, 3), and (PC 6, 5, 4) in RGB, respectively. The best band ratios recorded in the area are recorded the good discrimination (6/5, 4/3, and 2/1), (4/2, 6/7, and 5/6), and (3/2, 5/6, and 4/6) for RGB. The classification map achieved an overall accuracy of 95.27%, and these results from Landsat-9 data were validated by field geology and petrographical studies. The results of this survey can make a significant difference to detailed geological studies. A detailed map of the new district has been prepared through a combination of deep learning and fieldwork.

6.
Waste Manag Res ; : 734242X241257098, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915240

RESUMO

Due to increased urbanization, the development of new areas, construction of new houses and buildings and uncontrolled dumpsites (UDSs) are becoming a challenge facing local authorities in Saudi Arabia. UDSs pose health risks to the public, potentially deteriorating the environment around them and reducing the value of ongoing development areas. The local municipalities rely on field surveys and citizen reports. This can be inefficient because UDSs are often discovered too late, and remediating them can be costly. This study aimed to assess the conditions of UDSs in two cities in the Eastern Province of Saudi Arabia, Dammam and Hafer Al-Batin, using satellite image classification assessment techniques. The assessment included mapping the UDS locations and studying the spectral reflectance of the materials found in these dumpsites. The study provided a mapping of 62 UDS locations totalling around 13.01 km2 in the broader study area. UDS detections using remote sensing were followed by ground truthing and in situ measurements using a spectroradiometer. In addition, the spectral reflectance of 21 commonly deposited UDS materials was studied, and a spectral library was created for these materials for future use by local authorities.

7.
Environ Sci Pollut Res Int ; 31(28): 41167-41181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847954

RESUMO

Lake surface water temperature (LSWT) plays a crucial role in assessing the health of aquatic ecosystems. Variations in LSWT can significantly impact the physical, chemical, and biological processes within lakes. This study investigates the long-term changes in surface water temperature of the Dongting Lake, China. The LSWT is retrieved using Landsat thermal infrared imageries from 1988 to 2022 and validated with in situ observations, and the change characteristics of LSWT and near-surface air temperature (NSAT) as well as the spatial distribution characteristics of LSWT are analyzed. Additionally, the contribution rates of different meteorological factors to LSWT are quantified. The results show that the accuracy assessment of satellite-derived temperatures indicates a Nash-Sutcliffe efficiency coefficient (NSE) of 0.961, suggesting an accurate retrieval of water temperature. From 1988 to 2022, both the annual average LSWT and NSAT of Dongting Lake exhibit an increasing trend, with similar rates of warming. They both undergo a mutation in 1997 and have the main periods on the 11-year and 4-year time scales. The changes in NSAT emerge as one of the important factors contributing to variations in LSWT. Among the multiple meteorological factors, NSAT exhibits a significant correlation with LSWT (R = 0.822, α < 0.01). Furthermore, NSAT accounts for the highest contribution rate to LSWT, amounting to 67.5%. The distribution of LSWT within Dongting Lake exhibits spatial variations, with higher LSWT observed on the west part compared to the east part during summer, while lower LSWT occurs on the west part during winter. The findings of this study can provide a scientific understanding for the long-term thermal regimes of lakes and help advance sustainable lake management.


Assuntos
Monitoramento Ambiental , Lagos , Imagens de Satélites , Temperatura , China
8.
Sci Total Environ ; 943: 173886, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857791

RESUMO

Capturing long-term dynamics and the potential under climate change of woody aboveground biomass (AGB) is imperative for calculating and raising carbon sequestration of afforestation in dryland. It is always been a great challenge to accurately capture AGB dynamics of sparse woody vegetation mixed with grassland using only Landsat time-series, resulting in changing trajectory of woody AGB estimates cannot accurately reflect woody vegetation growth regularity in dryland. In this study, surface reflectance (SR) sensitive to woody AGB was firstly selected and interannual time-series of composited SR was smoothed using S-G filter for each pixel, and then optimal machine learning algorithm was selected to estimate woody AGB time-series. Pixels that have reached AGB potential were detected based on the AGB changing trajectory, and the potential was spatial-temporal extended using random forest model combining environmental variables under current climate condition and CMIP6 climate models. Results show that: 1) minimum value composite based on NIRv during Jul.-Sep. is more capable of explaining woody AGB variation in dryland (R = 0.87, p < 0.01), and Random Forest (RF) model has the best performance in estimating woody AGB (R2 = 0.75, RMSE = 4.74 t·ha-1) among sis commonly used machine learning models. 2) Annual woody AGB estimates can be perfectly fitted with a logistic growth curve (R2 = 0.97, p < 0.001) indicating explicit growth regularity of woody vegetation, which provides physiological foundation for determining woody AGB potential. 3) Woody AGB potential can be accurately simulated by RF combining environmental variables (R2 = 0.95, RMSE = 2.89 t·ha-1), and current woody AGB still has a potential of small increase, whereas the overall losses of woody AGB potential were observed in 2030, 2040 and 2050 under CMIP6 SSP-RCP scenarios.

9.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863181

RESUMO

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Assuntos
Imagens de Satélites , Tundra , Alaska , Regiões Árticas , Tecnologia de Sensoriamento Remoto/métodos , Taiga , Monitoramento Ambiental/métodos
10.
Ecol Evol ; 14(6): e11469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826172

RESUMO

In recent years, the continuous expansion of Spartina alterniflora (S. alterniflora) has caused serious damage to coastal wetland ecosystem. Mapping the coverage of S. alterniflora by remote sensing and analyzing its growth pattern pose great importance in controlling the expansion and maintaining the biodiversity of coastal wetlands in Guangxi. This study aimed to use harmonic regression to fit time series data of vegetation indices based on Landsat images, and the phenological features were extracted as the input of random forest model to distinguish S. alterniflora in coastal zone of Guangxi from 2009 to 2020. The influence of natural environmental factors on the distribution of S. alterniflora was evaluated by Maxent model, and the potential distribution was analyzed. The results showed that: (1) Based on the time series data of characteristic indices fitted by harmonic regression, the extraction of phenological features of S. alterniflora identification effect exhibited high accuracy (in the result of 2009, Overall Accuracy [OA] = 97.33%, Kappa = 0.95). (2) During 2009-2020, the S. alterniflora in coastal zone of Guangxi kept proliferating and expanding from east to west. The total area of S. alterniflora continued to increase while the growth rate showed a trend that increased first and then decreased. (3) The Maxent model shows good accuracy in simulating the habitat of S. alterniflora, with a potential distribution area of 14,303.39 hm2. The findings will be beneficial to the understanding of dynamic changes of S. alterniflora in coastal zone of Guangxi and provide a scientific reference for other coastal wetland studies on S. alterniflora expansion.

11.
Harmful Algae ; 135: 102631, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830709

RESUMO

Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.


Assuntos
Monitoramento Ambiental , Proliferação Nociva de Algas , Microcistinas , Microcystis , Imagens de Satélites , Microcistinas/metabolismo , Microcistinas/análise , Microcystis/fisiologia , Microcystis/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Cianobactérias/fisiologia , Cianobactérias/crescimento & desenvolvimento , Indonésia , Synechococcus/fisiologia , Lagos/microbiologia
12.
Sci Total Environ ; 935: 173433, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782288

RESUMO

The concentration of chlorophyll-a (Chl-a) in seawater reflects phytoplankton growth and water eutrophication, which are usually assessed for evaluation of primary productivity and carbon source/sink of coral reefs. However, the precise delineation of Chl-a concentration in coral reefs remains a challenge when ocean satellites with low spatial resolution are utilized. In this study, a remote sensing inversion model for Chl-a was developed in fringing reefs (R2 = 0.76, RMSE =0.41 µg/L, MRE = 14 %) and atolls (R2 = 0.79, RMSE =0.02 µg/L, MRE = 8 %), utilizing reflectance data from the sensitive band of the Landsat-8 Operational Land Imagers (OLI) with a spatial resolution of 30 m. The aforementioned model was utilized to invert high-resolution distribution maps of Chl-a concentration in six major coral reef regions of the South China Sea from 2013 to 2022 and subsequently used to analyze the variations in Chl-a concentration and its influencing factors. The results indicate a Chl-a concentration gradient among coral reefs Daya Bay, Weizhou Island, Luhuitou, Xuwen, Huangyan Island, and Xisha Island in that order. The Chl-a concentration in coral reefs exhibited an overall increasing trend, with significant seasonal fluctuations, characterized by higher concentrations during winter and spring and lower concentrations during summer and autumn. The concentration of Chl-a in coral reefs was positively correlated with the average wind speed.


Assuntos
Clorofila A , Recifes de Corais , Monitoramento Ambiental , Imagens de Satélites , China , Clorofila A/análise , Água do Mar/química , Clorofila/análise , Tecnologia de Sensoriamento Remoto , Fitoplâncton , Eutrofização
13.
Sci Total Environ ; 933: 173181, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740217

RESUMO

Lake Surface Water Temperature (LSWT) influences critical bio-geological processes in lake ecosystems, and there is growing evidence of rising LSWT over recent decades worldwide and future shifts in thermal patterns are expected to be a major consequence of global warming. At a regional scale, assessing recent trends and anticipating impacts requires data from a number of lakes, but long term in situ monitoring programs are scarce, particularly in mountain areas. In this work, we propose the combined use of satellite-derived temperature with in situ data for a five-year period (2017-2022) from 5 small (<0.5km2) high altitude (1880-2680 masl) Pyrenean lakes. The comparison of in situ and satellite-derived data in a common period (2017-2022) during the summer season showed a notably high (r = 0.94, p < 0.01) correlation coefficient, indicative of a robust relationship between the two data sources. The root mean square errors ranged from 1.8 °C to 3.9 °C, while the mean absolute errors ranged from 1.6 °C to 3.6 °C. We applied the obtained in situ-satellite eq. (2017-2022) to Landsat 5, 7 and 8/9 data since 1985 to reconstruct the summer surface temperature of the five studied lakes with in situ data and to four additional lakes with no in situ monitoring data. Reconstructed LSWT for the 1985-2022 showed an upward trend in all lakes. Moreover, paleolimnological reconstructions based on sediment cores studies demonstrate large changes in the last decades in organic carbon accumulation, sediment fluxes and bioproductivity in the Pyrenean lakes. Our research represents the first comprehensive investigation conducted on high mountain lakes in the Pyrenees that compares field monitoring data with satellite-derived temperature records. The results demonstrate the reliability of satellite-derived LSWT for surface temperatures in small lakes, and provide a tool to improve the LSWT in lakes with no monitoring surveys.

14.
Mar Pollut Bull ; 203: 116475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761680

RESUMO

As marine resources and transportation develop, oil spill incidents are increasing, endangering marine ecosystems and human lives. Rapidly and accurately identifying marine oil spill is of utmost importance in protecting marine ecosystems. Marine oil spill detection methods based on deep learning and computer vision have the great potential significantly enhance detection efficiency and accuracy, but their performance is often limited by the scarcity of real oil spill samples, posing a challenging to train a precise detection model. This study introduces a detection method specifically designed for scenarios with limited sample sizes. First, the small sample dataset of marine oil spill taken by Landsat-8 satellite is used as the training set. Then, a single image generative adversarial network (SinGAN) capable of training with a single oil spill image is constructed for expanding the dataset, generating diverse marine oil spill samples with different shapes. Second, a YOLO-v8 model is pretrained via the method of transfer learning and then trained with dataset before and after augmentation separately for real-time and efficient oil spill detection. Experimental results have demonstrated that the YOLO-v8 model, trained on an expanded dataset, exhibits notable enhancements in recall, precision, and average precision, with improvements of 12.3 %, 6.3 %, and 11.3 % respectively, compared to the unexpanded dataset. It reveals that our marine oil spill detection model based on YOLO-v8 exhibits leading or comparable performance in terms of recall, precision, and AP metrics. The data augmentation technique based on SinGAN contributes to the performance of other popular object detection algorithms as well.


Assuntos
Algoritmos , Monitoramento Ambiental , Poluição por Petróleo , Monitoramento Ambiental/métodos , Aprendizado Profundo
15.
Sci Total Environ ; 934: 173167, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761931

RESUMO

Urban parks play a key role in UHI mitigation. However, the role of other prominent types of urban green infrastructure has not been comprehensively studied. Thus, the main objective of this study was to evaluate the role of cemeteries and allotments as cooling islands compared to the well-studied park areas. We assessed the LST of cemeteries, allotments and parks based on Landsat 8 TM images across the five largest German cities during summertime. Random forest regressions explain the LST spatial variability of the different urban green spaces (UGS) with spectral indices (NDVI, NDMI, NDBaI) as well as with tree characteristics (tree type, tree age, trunk circumferences, trunk height or canopy density). As a result, allotments were identified as the hottest UGS with the city means varying between 23.1 and 26.9 °C, since they contain a relatively high proportion of sealed surfaces. The LST spatial variability of allotment gardens was best explained by the NDVI indicating that fields with a higher percentage of flowering shrubs and trees reveal lower LST values than those covered by annual crops. Interestingly, cemeteries were characterized as the coolest UGS, with city means between 20.4 and 24.7 °C. Despite their high proportion of sealed surfaces, they are dominated by old trees resulting in intensive transpiration processes. Parks show heterogeneous LST patterns which could not be systematically explained by spectral indices due to the variability of park functionality and shape. Compared to parks, the tree-covered areas of cemeteries have a higher cooling potential since cemeteries as cultural heritage sites are well-protected allowing old tree growth with intensive transpiration. These findings underline the relevance of cemeteries as cooling islands and deepen the understanding of the role of tree characteristics in the cooling process.

16.
Glob Chang Biol ; 30(5): e17315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721865

RESUMO

Grasslands provide important ecosystem services to society, including biodiversity, water security, erosion control, and forage production. Grasslands are also vulnerable to droughts, rendering their future vitality under climate change uncertain. Yet, the grassland response to drought is not well understood, especially for heterogeneous Central European grasslands. We here fill this gap by quantifying the spatiotemporal sensitivity of grasslands to drought using a novel remote sensing dataset from Landsat/Sentinel-2 paired with climate re-analysis data. Specifically, we quantified annual grassland vitality at fine spatial scale and national extent (Germany) from 1985 to 2021. We analyzed grassland sensitivity to drought by testing for statistically robust links between grassland vitality and common drought indices. We furthermore explored the spatiotemporal variability of drought sensitivity for 12 grassland habitat types given their different biotic and abiotic features. Grassland vitality maps revealed a large-scale reduction of grassland vitality during past droughts. The unprecedented drought of 2018-2019 stood out as the largest multi-year vitality decline since the mid-1980s. Grassland vitality was consistently coupled to drought (R2 = .09-.22) with Vapor Pressure Deficit explaining vitality best. This suggests that high atmospheric water demand, as observed during recent compounding drought and heatwave events, has major impacts on grassland vitality in Central Europe. We found a significant increase in drought sensitivity over time with highest sensitivities detected in periods of extremely high atmospheric water demand, suggesting that drought impacts on grasslands are becoming more severe with ongoing climate change. The spatial variability of grassland drought sensitivity was linked to different habitat types, with declining sensitivity from dry and mesic to wet habitats. Our study provides the first large-scale, long-term, and spatially explicit evidence of increasing drought sensitivities of Central European grasslands. With rising compound droughts and heatwaves under climate change, large-scale grassland vitality loss, as in 2018-2019, will thus become more likely in the future.


Assuntos
Mudança Climática , Secas , Pradaria , Tecnologia de Sensoriamento Remoto , Alemanha , Água/análise , Atmosfera
17.
Heliyon ; 10(9): e30470, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726202

RESUMO

Coastal terrestrial-aquatic interfaces (TAIs) are crucial contributors to global biogeochemical cycles and carbon exchange. The soil carbon dioxide (CO2) efflux in these transition zones is however poorly understood due to the high spatiotemporal dynamics of TAIs, as various sub-ecosystems in this region are compressed and expanded by complex influences of tides, changes in river levels, climate, and land use. We focus on the Chesapeake Bay region to (i) investigate the spatial heterogeneity of the coastal ecosystem and identify spatial zones with similar environmental characteristics based on the spatial data layers, including vegetation phenology, climate, landcover, diversity, topography, soil property, and relative tidal elevation; (ii) understand the primary driving factors affecting soil respiration within sub-ecosystems of the coastal ecosystem. Specifically, we employed hierarchical clustering analysis to identify spatial regions with distinct environmental characteristics, followed by the determination of main driving factors using Random Forest regression and SHapley Additive exPlanations. Maximum and minimum temperature are the main drivers common to all sub-ecosystems, while each region also has additional unique major drivers that differentiate them from one another. Precipitation exerts an influence on vegetated lands, while soil pH value holds importance specifically in forested lands. In croplands characterized by high clay content and low sand content, the significant role is attributed to bulk density. Wetlands demonstrate the importance of both elevation and sand content, with clay content being more relevant in non-inundated wetlands than in inundated wetlands. The topographic wetness index significantly contributes to the mixed vegetation areas, including shrub, grass, pasture, and forest. Additionally, our research reveals that dense vegetation land covers and urban/developed areas exhibit distinct soil property drivers. Overall, our research demonstrates an efficient method of employing various open-source remote sensing and GIS datasets to comprehend the spatial variability and soil respiration mechanisms in coastal TAI. There is no one-size-fits-all approach to modeling carbon fluxes released by soil respiration in coastal TAIs, and our study highlights the importance of further research and monitoring practices to improve our understanding of carbon dynamics and promote the sustainable management of coastal TAIs.

18.
Curr Biol ; 34(8): 1786-1793.e4, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38614083

RESUMO

Soda lakes are some of the most productive aquatic ecosystems.1 Their alkaline-saline waters sustain unique phytoplankton communities2,3 and provide vital habitats for highly specialized biodiversity including invertebrates, endemic fish species, and Lesser Flamingos (Phoeniconaias minor).1,4 More than three-quarters of Lesser Flamingos inhabit the soda lakes of East Africa5; however, populations are in decline.6 Declines could be attributed to their highly specialized diet of cyanobacteria7 and dependence on a network of soda lake feeding habitats that are highly sensitive to climate fluctuations and catchment degradation.8,9,10,11,12 However, changing habitat availability has not been assessed due to a lack of in situ water quality and hydrology data and the irregular monitoring of these waterbodies.13 Here, we combine satellite Earth observations and Lesser Flamingo abundance observations to quantify spatial and temporal trends in productivity and ecosystem health over multiple decades at 22 soda lakes across East Africa. We found that Lesser Flamingo distributions are best explained by phytoplankton biomass, an indicator of food availability. However, timeseries analyses revealed significant declines in phytoplankton biomass from 1999 to 2022, most likely driven by substantial rises in lake water levels. Declining productivity has reduced the availability of healthy soda lake ecosystems, most notably in equatorial Kenya and northern Tanzania. Our results highlight the increasing vulnerability of Lesser Flamingos and other soda lake biodiversity in East Africa, particularly with increased rainfall predicted under climate change.14,15,16 Without improved lake monitoring and catchment management practices, soda lake ecosystems could be pushed beyond their environmental tolerances. VIDEO ABSTRACT.


Assuntos
Lagos , Fitoplâncton , Animais , África Oriental , Biodiversidade , Biomassa , Mudança Climática , Ecossistema , Fitoplâncton/fisiologia
19.
Sci Total Environ ; 926: 172117, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38565346

RESUMO

Water resources are essential for the ecological system and the development of civilization. Water is imperative factor for health preservation and sustaining various human activities, including industrial production, agriculture, and daily life. Remote sensing provides a cost-effective and practical means to detect and monitor water bodies, offers valuable insights into the impact of climatic events on water structures, especially in coastal lake regions. The research primarily utilizes Landsat-9 OLI-2 satellite images to evaluate the effectiveness of various water indices (WRI, NWI, MNDWI, NDWI) in combination with global automatic thresholding methods (K-Means, Zhenzhou's, Adaptive, Intermodes, Prewitt and Mendelsohn's Minimum, Maximum Entropy, Median, Concavity, Percentile, Intermeans, Kittler and Illingworth's Minimum Error, Tsai's Moments, Otsu's, Huang's fuzzy, Triangle, Mean, IsoData, Li's). The study was carried out on Lake Nazik, Lake Iznik, and Lake Beysehir, which have unique geographical characteristics, and examined the adaptability and robustness of the selected indices and thresholding methods. MNDWI consistently stands out as a robust index for water extraction, delivering accurate results across different thresholding methods in regions all three lakes. As a result of quite extensive analysis, it is obtained that MNDWI and NDWI are reliable choices for water feature extraction in various lake environments, but the specific index should consider the thresholding method and unique lake characteristics. The Minimum thresholding method stands out as the most effective thresholding technique, demonstrating impressive results across different lakes. Specifically, it achieved an average Peak Signal-to-Noise Ratio (PSNR) of 78.97 and Structural Similarity Index (SSIM) of 99.37 for Lake Nazik, 74.08 PSNR and 98.34 SSIM for Lake Iznik, and 63.96 PSNR and 93.61 SSIM for Lake Beysehir.

20.
J Hazard Mater ; 470: 134225, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583204

RESUMO

The lake eutrophication is highly variable in both time and location, and greatly restricts the sustainable development of water resources. The lack of national eutrophication evaluation for multi-scale lakes limits the pertinent governance and sustainable management of water quality. In this study, a remote sensing approach was developed to capture 40-year dynamics of trophic state index (TSI) for nationwide lakes in China. 32% of lakes (N = 1925) in China were eutrophic and 26% were oligotrophic, and a longitudinal pattern was discovered, with the 40-year average TSI of 62.26 in the eastern plain compared to 23.72 in the Tibetan Plateau. A decreasing trend was further observed in the past four decades with a correlation of -0.16, which was mainly discovered in the Tibetan Plateau lakes (r > -0.90, p < 0.01). The contribution of climate change and human activities was quantified and varied between lake zones, with anthropogenic factors playing a dominant role in the east plain lakes (88%, N = 473) and large lakes are subject to a more complex driving mechanism (≥ 3 driving factors). The study expands the spatiotemporal scale for eutrophication monitoring and provides an important base for strengthening lake management and ecological services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA