Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Ultrasonics ; 141: 107331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685139

RESUMO

Different from the traditional frequency-mixing technique which employs a contacting transducer, the laser-induced acoustic nonlinear frequency-mixing detection technique utilizes a laser source to instigate crack motion and generate acoustic waves. Thus, apart from the temperature oscillation induced by the pump laser, the "basic temperature" originating from the probe laser can also influence the crack. This additional variable complicates the contact state of the crack, yielding a more diverse range of nonlinear acoustic signal attributes. In light of this, our study enhances the conventional opto-acoustic nonlinear frequency mixing experimental setup by integrating an independent heating laser beam. This modification isolates the impact of the "basic temperature" on crack width while also dialing down the probe laser power to mitigate its thermal effects. To amplify the sensitivity of crack detection, we deliberated on the optimal laser source parameters for this setup. Consequently, our revamped system, paired with fine-tuned parameters, captures nonlinear acoustic signals with an enriched feature set. This investigation can provide support for the non-contact opto-acoustic nonlinear frequency mixing technique in the detection and evaluation of micro-cracks.

2.
Ultrasonics ; 140: 107296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531114

RESUMO

Laser ultrasonics (LU) is a non-contact and non-destructive method with a high data acquisition rate, making it a promising candidate for in-situ monitoring of defects in different additive manufacturing (AM) processes, including laser powder bed fusion (LPBF) and directed energy deposition, as well as final part inspection. In order to see the effect of various artificial defect types on an LU sub-surface reconstruction, AlSi10Mg samples with side through-holes, as well as Ti6Al4V samples with bottom blind holes and trapped powder were printed using LPBF, and then ultrasound B-scans of the samples were obtained using an LU system. The resulting scan data was processed using a custom frequency domain phase shift migration (PSM) algorithm, to reconstruct the defects and their locations. Novel ways of pre-processing the B-scan, used as an input to PSM, and taking advantage of its frequency representation, are demonstrated. Newton's method was used to find a stationary phase approximation, used to account in the frequency domain for the fixed offset emitter-receiver arrangement within the PSM calculation. The Newton's method calculation time was reduced by 33%, by using an approximation of the phase function to find an initial guess. The smallest defects that were detected using this method were in the size range between 200 to 300µm for the bottom hole defects, using an 8 ns laser pulse duration. The effect of the laser on the surface of a part being built, and the challenges and further work needed to integrate LU in a LPBF machine for in-situ inspection are discussed.

3.
Ultrasonics ; 139: 107288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513438

RESUMO

Photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique is an effective method for detecting micro-cracks. When using this technique for micro-crack detection, the selection of laser source parameters is particularly crucial. Compared to traditional piezo-transducer-based mixing techniques, the characteristic of using a laser as the detection source is the presence of thermal effects. The thermal effect caused by laser irradiation on the sample surface can not only generate acoustic waves but also affect the crack state, thus influencing nonlinear signals. In this paper, an experimental setup using photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique has been set up to investigate the thermal effects of the probe laser source. In addition, a corresponding physical model has been established to discuss the physical mechanisms revealed by the experimental results. This study provides a basis for selecting appropriate probe source parameters and scanning positions of laser sources when detecting micro-cracks using the photo-thermal modulation-based nonlinear opto-acoustic frequency-mixing technique.

4.
ACS Nano ; 18(13): 9331-9343, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498702

RESUMO

Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. These applications include the sensing of small amount of materials deposited on surfaces, assessing surface roughness and defects, signal processing, light manipulation, charge carrier and exciton transportation, and the study of fundamental interactions with thermal phonons, photons, magnons, and more. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the upper limit for coherent SAW frequencies below 100 GHz, constrained by factors such as the quality and pitch of the surface nanopattern, not to mention the electronic bandwidth limitations of the IDTs. In this context, unconventional optically controlled nanotransducers based on cleaved superlattices (SLs) are here presented as an alternative solution. To demonstrate their viability, we conducted proof-of-concept experiments using ultrafast lasers in a pump-probe configuration on SLs made of alternating AlxGa1-xAs and AlyGa1-yAs layers with approximately 70 nm periodicity and cleaved along their growth direction to produce a periodic nanostructured surface. The acoustic vibrations, generated and detected by laser beams incident on the cleaved surface, span a range from 40 to 70 GHz, corresponding to the generalized surface Rayleigh mode and bulk modes within the dispersion relation. This exploration shows that, in addition to SAWs, cleaved SLs offer the potential to observe surface-skimming longitudinal and transverse acoustic waves at GHz frequencies. This proof-of-concept demonstration below 100 GHz in nanoacoustics using such an unconventional platform might be useful for realizing sub-THz to THz coherent surface acoustic vibrations in the future, as SLs can be epitaxially grown with atomic-scale layer width and quality.

5.
Ultrasonics ; 138: 107252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277767

RESUMO

Laser ultrasound (LU) is a contactless and couplant-free remote non-destructive (NDE) technique, which uses lasers for ultrasonic generation and detection rather than conventional piezoelectric transducers. For a transducer, an important characteristic is the directivity, the angle-dependent amplitude of the ultrasonic waves generated in the material. In the non-destructive thermoelastic regime, LU source has been widely modelled as a surface force dipole. However, the directivity of LU in more complex material, where there is an increasing demand for NDE, such as carbon fibre reinforced plastic (CFRP), is yet to be understood. In the current paper, a finite element (FE) modelling methodology to obtain the directivity of LU in complex material is presented. The method is applied to a conductive isotropic material (aluminium, Al) for validation against an existing analytical solution and then applied to a heterogeneous anisotropic material (carbon-fibre reinforced plastic, CFRP). To get the directivity of a specific wave mode, the signal for that mode needs to be resolved in time from other modes at all angles. This is challenging for shear (S) waves in a small model domain due to the head wave, so a technique for suppressing the head wave is shown. The multi-physics model solves for thermal expansion, which models the laser source as a surface heat flux for the Al case, and a buried heat source for the CFRP case, according to where the energy is deposited in the material. The same ultrasound generation pattern can be obtained by using a suitable pure elastodynamic loading, which is shown to be a surface force dipole as per the validation case for Al, and a buried quadrupole for the CFRP case. The modelled directivities are scaled and fitted to experimental measurements using maximum likelihood, and the goodness of fit is discussed. For the Al case, the S wave is preferred over the longitudinal (L) wave for inspection due to greater signal amplitude. For the CFRP case, the quasi-longitudinal (qL) wave in CFRP shows a maximum amplitude directly below the source, and has a greater amplitude than the quasi-shear (qS) wave, suggesting a better choice for inspection.

6.
Photoacoustics ; 34: 100565, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058748

RESUMO

Phonons and magnons are prospective information carriers to substitute the transfer of charge in nanoscale communication devices. Our ability to manipulate them at the nanoscale and with ultimate speed is examined by ultrafast acoustics and femtosecond optomagnetism, which use ultrashort laser pulses for generation and detection of the corresponding coherent excitations. Ultrafast magnetoacoustics merges these research directions and focuses on the interaction of optically generated coherent phonons and magnons. In this review, we present ultrafast magnetoacoustic experiments with nanostructures based on the alloy (Fe,Ga) known as Galfenol. We demonstrate how broad we can manipulate the magnetic response on an optical excitation by controlling the spectrum of generated coherent phonons and their interaction with magnons. Resonant phonon pumping of magnons, formation of magnon polarons, driving of a magnetization wave by a guided phonon wavepacket are demonstrated. The presented experimental results have great application potential in emerging areas of modern nanoelectronics.

7.
Photoacoustics ; 33: 100547, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021283

RESUMO

Time-domain Brillouin scattering (TDBS) is a developing technique for imaging/evaluation of materials, currently used in material science and biology. Three-dimensional imaging and characterization of polycrystalline materials has been recently reported, demonstrating evaluation of inclined material boundaries. Here, the TDBS technique is applied to monitor the destruction of a lithium niobate single crystal upon non-hydrostatic compression in a diamond anvil cell. The 3D TDBS experiments reveal, among others, modifications of the single crystal plate with initially plane-parallel surfaces, caused by non-hydrostatic compression, the laterally inhomogeneous variations of the plate thickness and relative inclination of opposite surfaces. Our experimental observations, supported by theoretical interpretation, indicate that TDBS enables the evaluation of materials interface orientation/inclination locally, from single point measurements, avoiding interface profilometry. A variety of observations reported in this paper paves the way to further expansion of the TDBS imaging use to analyze fascinating processes/phenomena occurring when materials are subjected to destruction.

8.
Photoacoustics ; 33: 100563, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37953941

RESUMO

A theory has been developed to interpret time-domain Brillouin scattering (TDBS) experiments involving coherent acoustic pulse (CAP) and light pulse beams propagating at an angle to each other. It predicts the influence of the directivity pattern of their acousto-optic interaction on TDBS signals when heterodyne detection of acoustically scattered light is in backward direction to incident light. The theory reveals relationships between the carrier frequency, amplitude and duration of acoustically induced "wave packets" in light transient reflectivity signals, and factors such as CAP duration, widths of light and sound beams, and their interaction angle. It describes the transient dynamics of these wave packets when the light and CAP encounter material interfaces, and how the light scattering by the incident CAP transforms into scattering by the reflected and transmitted CAPs. The theory suggests that single-point TDBS experiments can determine not only depth positions of buried interfaces but also their local inclinations/orientations.

9.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836866

RESUMO

Traditional ultrasonic testing uses a single probe or phased array probe to investigate and visualize defects by adapting certain imaging algorithms. The time-domain synthetic aperture focusing technique (T-SAFT) is an imaging algorithm that employs a single probe to scan along the test specimen in various positions, to generate inspection images with better resolution. Both the T-SAFT and phased array probes are contact methods with limited bandwidth. This work aims to combine the advantages of the T-SAFT and phased array in a noncontact way with the aid of laser ultrasonics. Here, a pulsed laser beam is employed to generate ultrasonic waves in both thermoelastic and ablation regimes, whereas the laser Doppler vibrometer is used to acquire the generated signals. These two lasers are focused on the test specimen and, to avoid the plasma and crater influence in the ablation regime, the transmission beam and reception beam are separated by 5 mm. By moving the test specimen with a step size of 0.5 mm, a 1D linear phased array (41 and 43 elements) with a pitch of 0.5 mm was synthesized, and three side-drilled holes (Ø 8 mm-thermoelastic regime, Ø 10 mm and Ø 2 mm-ablation regime) were introduced for inspection. The A-scan data obtained from these elements were processed via the T-SAFT algorithm to generate the inspection images in various grid sizes. The results showed that the defect reflections obtained in the ablation regime have better visibility than those from the thermoelastic regime. This is due to the high-amplitude signals obtained in the ablation regime, which pave the way for enhancing the pixel intensity of each grid. Moreover, the separation distance (5 mm) does not have any significant effect on the defect location during the reconstruction process.

10.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20230016, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634530

RESUMO

Germanium nitride, having cubic spinel structure, γ-Ge3N4, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli (B0 and G0, respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering B0 values but consistently predicted G0 much higher than the so far available experimental value. Here, we examined the elasticity of polycrystalline γ-Ge3N4, densified applying high pressures and temperatures, using the techniques of laser ultrasonics (LU) and Brillouin light scattering (BLS) and compared with our extended first-principles calculations. From the LU measurements, we obtained its longitudinal- and Rayleigh wave sound velocities and, taking into account the sample porosity, derived B0 = 322(44) GPa and G0 = 188(7) GPa for the dense polycrystalline γ-Ge3N4. While our calculations underestimated B0 by approximately 17%, most of the predicted G0 matched well with our experimental value. Combining the LU- and BLS data and taking into account the elastic anisotropy, we determined the refractive index of γ-Ge3N4 in the visible range of light to be n = 2.4, similarly high as that of diamond or GaN, and matching our calculated value. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

11.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374792

RESUMO

Because of rapid heating, cooling, and solidification during metal additive manufacturing (AM), the resulting products exhibit strong anisotropy and are at risk of quality problems from metallurgical defects. The defects and anisotropy affect the fatigue resistance and material properties, including mechanical, electrical, and magnetic properties, which limit the applications of the additively manufactured components in the field of engineering. In this study, the anisotropy of laser power bed fusion 316L stainless steel components was first measured by conventional destructive approaches using metallographic methods, X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). Then, anisotropy was also evaluated by ultrasonic nondestructive characterization using the wave speed, attenuation, and diffuse backscatter results. The results from the destructive and nondestructive methods were compared. The wave speed fluctuated in a small range, while the attenuation and diffuse backscatter results were varied depending on the build direction. Furthermore, a laser power bed fusion 316L stainless steel sample with a series of artificial defects along the build direction was investigated via laser ultrasonic testing, which is more commonly used for AM defect detection. The corresponding ultrasonic imaging was improved with the synthetic aperture focusing technique (SAFT), which was found to be in good agreement with the results from the digital radiograph (DR). The outcomes of this study provide additional information for anisotropy evaluation and defect detection for improving the quality of additively manufactured products.

12.
Photoacoustics ; 30: 100471, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36950517

RESUMO

We exploit a time-resolved ultrafast optical technique to study the propagation of point-excited surface acoustic waves on a microscopic two-dimensional phononic crystal in the form of a square lattice of holes in a silicon substrate. Constant-frequency images and the dispersion relation are extracted, and the latter measured in detail in the region around the phononic band gap. Mode conversion and refraction at the interface between the phononic crystal and surrounding non-structured silicon substrate is studied at constant frequencies. Symmetric phonon beam splitting, for example, is shown to lead to a striking Maltese-cross pattern when phonons exit a square region of phononic crystal excited near its center.

13.
Photoacoustics ; 29: 100440, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36582843

RESUMO

In this article, we present an overview of recent progress in non-contact remote optical detection of ultrasound in application to nondestructive testing and evaluation of materials. The focus of the review is on the latest advances in optical detection that offer mature and robust field-applicable solutions for diagnostics and imaging of engineered structures. We provide a detailed description of these solutions, including their operation principles, their evolution from the previously known designs to commercial devices, and their contribution to solving the most important problems associated with non-contact optical detection of ultrasound. Several application examples are presented to demonstrate the capabilities of optical detection and provide ideas to a reader on how it can be used in practice. We also discuss the main challenges of modern non-contact detectors which have not yet been addressed, as well as the directions and prospects for their development.

14.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236319

RESUMO

The laser ultrasonic method using the characteristics of transmitted Rayleigh waves in the frequency domain to determine micro-crack depth is proposed. A low-pass filter model based on the interaction between Rayleigh waves and surface cracks is built and shows that the stop band, called the sensitive frequency range, is sensitive to the depth of surface cracks. The sum of transmission coefficients in the sensitive frequency range is defined as an evaluated parameter to determine crack depth. Moreover, the effects of the sensitive frequency range and measured distance on the evaluated results are analyzed by the finite-element method to validate the robustness of this depth-evaluating method. The estimated results of surface cracks with depths ranging from 0.08 mm to ~0.5 mm on the FEM models and aluminum-alloy samples demonstrate that the laser ultrasounds using the characteristics of Rayleigh waves in the frequency domain do work for quantitative crack depth.


Assuntos
Alumínio , Ultrassom , Ligas , Lasers , Ultrassonografia
15.
Photoacoustics ; 28: 100413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36276232

RESUMO

Photoacoustic devices generating high-amplitude and high-frequency ultrasounds are attractive candidates for medical therapies and on-chip bio-applications. Here, we report the photoacoustic response of graphene nanoflakes - Polydimethylsiloxane composite. A protocol was developed to obtain well-dispersed graphene into the polymer, without the need for surface functionalization, at different weight percentages successively spin-coated onto a Polydimethylsiloxane substrate. We found that the photoacoustic amplitude scales up with optical absorption reaching 11 MPa at ∼ 228 mJ/cm2 laser fluence. We observed a deviation of the pressure amplitude from the linearity increasing the laser fluence, which indicates a decrease of the Grüneisen parameter. Spatial confinement of high amplitude (> 40 MPa, laser fluence > 55 mJ/cm2) and high frequency (Bw-6db ∼ 21.5 MHz) ultrasound was achieved by embedding the freestanding film in an optical lens. The acoustic gain promotes the formation of cavitation microbubbles for moderate fluence in water and in tissue-mimicking material. Our results pave the way for novel photoacoustic medical devices and integrated components.

16.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145965

RESUMO

This paper characterizes laser-generated guided waves in a metal-lined composite-overwrapped pressure vessel (COPV) to assess typical damage, including interfacial debonding and low-velocity impact damage. First, an eigenfrequency approach that avoids additional coding is utilized to theoretically analyze the dispersion characteristics of a COPV. The theoretical results show that interfacial debonding significantly alters dispersion curves, and the wavenumber of the L(0, 1) mode is sensitive to impact damage. Experimental verifications were conducted based on the full wavefield acquired using a scanning laser-ultrasonic system with a repetition rate of 1 kHz. By comparing the experimental dispersion curves with the theoretical ones, it was found that the metal-composite interface was not bonded. In addition, a local wavenumber estimation method was established to detect the impact damage by obtaining the spatial distribution of the wavenumber of the L(0, 1) mode.

17.
Materials (Basel) ; 15(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329613

RESUMO

Nanoscale amorphous silicon carbide (a-SiC) thin films are widely used in engineering applications. It is important to obtain accurate information about their material properties because they often differ from those of the bulk state depending on the fabrication technique and process parameters. In this study, the thermal and mechanical properties of a-SiC thin films were evaluated using the femtosecond pump-probe technique, which provides high spatial and temporal resolutions sufficient to measure films that have a thickness of less than 300 nm. a-SiC films were grown using a plasma-enhanced chemical vapor deposition system, and the surface characteristics were analyzed using ellipsometry, atomic force microscopy, and X-ray reflectometry. The results show that the out-of-the-plane thermal conductivity of the films is lower than that of bulk crystalline SiC by two orders of magnitude, but the lower limit is dictated by the minimum thermal conductivity. In addition, a decrease in the mass density resulted in a reduced Young's modulus by 13.6-78.4% compared to the literature values, implying low Si-C bond density in the microstructures. The scale effect on both thermal conductivity and Young's modulus was not significant.

18.
Ultrasonics ; 119: 106560, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598095

RESUMO

The quality of additive manufacturing (AM) components must be guaranteed to ensure wide applicability, and a nondestructive inspection technology is required in this regard. Therefore, this study examined a method for detecting subsurface defects using ultrasonic waves excited by a laser. Fundamental experiments showed that wideband ultrasonic waves can be excited with a suitable signal-to-noise ratio using high-repetition laser pulses. Images of subsurface defects were appropriately obtained using a scanning laser source (SLS) with broadband waves for an aluminum alloy flat plate with artificial defects. The imaging experiments showed that the acquisition condition depends on the local defect resonant (LDR) frequency in the defective part. The imaging technique also enabled to detect subsurface circular defects created by AM with the diameter below 1.0 mm that were undetectably small in our previous study using the SLS. Based on results of these experiments and a finite element analysis, the following guideline is proposed: the LDR frequencies of targeted defects must be included in the tested frequency range.

19.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835895

RESUMO

Wide-range continuous spatial variation of the film composition in lateral compositionally graded epitaxial films requires the development of high throughput measurement techniques for their local and non-destructive characterization with the highest possible spatial resolution. Here we report on the first application of the picosecond laser ultrasonics (PLU) technique for the evaluation of acoustical and optical parameters of lateral compositionally graded film, the Ba1-xSrxTiO3 (0 ≤ x ≤ 1) material library. The film was not dedicatedly prepared for its opto-acousto-optic evaluation by PLU, exhibiting significant lateral variations in thickness and surface roughness. Therefore, the achieved measurements of the sound velocity and of the optical refractive index, and characterization of the surface roughness confirm the robustness of the PLU technique for thin film evaluation. We hope that the first measurements of the acoustical and optical properties of epitaxial grown Ba1-xSrxTiO3 (0 ≤ x ≤ 1) by PLU technique accomplished here provide the parameters required for more extended predictive design of the phononic, photonic and phoxonic mirrors and cavities with superior properties/functionalities for novel multifunctional nanodevices.

20.
Ultrasonics ; 114: 106426, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812273

RESUMO

Nonlinear ultrasonic testing method is one of few techniques that are effective for evaluating early material degradation and micro-crack initiation by analysing the nonlinear effects of ultrasonic waves. This study presents a noncontact nonlinear ultrasonic testing method based on lasers for closed surface crack inspection. A pulsed laser grating source by grating mask is applied to generate narrowband surface acoustic wave of a chosen frequency. A nonlinear numerical simulation based on Finite Element Method (FEM) is developed to simulate the generation of higher harmonics by closed surface crack. The simulation results show that the acoustic nonlinearity parameter increases with the micro closed crack length, while decreases with the micro closed crack buried depth. Moreover, the detection capability of this method is verified by an experiment. The experimental results show that the proposed laser-based nonlinear ultrasonic testing method can provide a fully noncontact and coupling-free measurement method for closed surface crack inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA