Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Int J Food Microbiol ; 421: 110777, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38909488

RESUMO

Cronobacter sakazakii is a potentially pathogenic bacterium that is resistant to osmotic stress and low aw, and capable of persisting in a desiccated state in powdered infant milks. It is widespread in the environment and present in various products. Despite the low incidence of cases, its high mortality rates of 40 to 80 % amongst neonates make it a microorganism of public health interest. This current study performed a comparative assessment between current reduction methods applied for C. sakazakii in various food matrices, indicating tendencies and relevant parameters for process optimization. A systematic review and meta-analysis were conducted, qualitatively identifying the main methods of inactivation and control, and quantitatively evaluating the effect of treatment factors on the reduction response. Hierarchical clustering dendrograms led to conclusions on the efficiency of each treatment. Review of recent research trend identified a focus on the potential use of alternative treatments, with most studies related to non-thermal methods and dairy products. Using random-effects meta-analysis, a summary effect-size of 4-log was estimated; however, thermal methods and treatments on dairy matrices displayed wider dispersions - of τ2 = 8.1, compared with τ2 = 4.5 for vegetal matrices and τ2 = 4.0 for biofilms. Meta-analytical models indicated that factors such as chemical concentration, energy applied, and treatment time had a more significant impact on reduction than the increase in temperature. Non-thermal treatments, synergically associated with heat, and treatments on dairy matrices were found to be the most efficient.


Assuntos
Cronobacter sakazakii , Microbiologia de Alimentos , Cronobacter sakazakii/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Humanos , Laticínios/microbiologia , Manipulação de Alimentos/métodos , Biofilmes/crescimento & desenvolvimento , Animais
2.
J Food Prot ; 87(7): 100298, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734415

RESUMO

Validation of baking processes for the inactivation of Salmonella is complicated by the combined effects of product heating and drying. The goal of this study was to quantitatively evaluate a previously disseminated approach to validating baking processes utilizing a predictive model developed using only isothermal and single-moisture inactivation data for the initially formulated dough. A simple cracker dough was formulated using flour inoculated with a five-strain cocktail of Salmonella. Side-by-side isothermal and baking experiments were performed to estimate Salmonella inactivation kinetics and to quantify survivors in a dynamic environment, respectively. Isothermal, single-moisture inactivation experiments were performed with cracker dough (water activity, aw = 0.956 ± 0.002; moisture content = 0.50 ± 0.01 dry basis) at three temperatures (56, 60, or 63°C) with ≥6 time intervals. Baking experiments were performed in a convection oven at 177°C with samples pulled every 30 s up to 360 s, with an endpoint product aw (25°C) of 0.45. The Salmonella isothermal, single-moisture inactivation kinetics in cracker dough resulted in D60°C and z-values of 4.6 min and 4.9°C, respectively; this model was then integrated over the dynamic product temperature profiles from the baking experiments. In the baking experiments, an average of 5-log reductions of Salmonella was achieved by 150 s of treatment; however, >100-log reductions were predicted by the dough-based models at that time point. This fail-dangerous overestimation of Salmonella lethality in crackers explicitly demonstrated that single-level moisture-based prediction models are inappropriate for describing inactivation in a process with both dynamic temperature and moisture, and that model-based validations must incorporate moisture/aw. Furthermore, end-users should exercise caution when utilizing unvalidated models to validate preventive control processes.


Assuntos
Microbiologia de Alimentos , Salmonella , Cinética , Contagem de Colônia Microbiana , Humanos , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Qualidade de Produtos para o Consumidor , Farinha , Culinária , Temperatura , Temperatura Alta , Água
3.
Int J Biol Macromol ; 269(Pt 2): 132192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723829

RESUMO

This study explored the gelatinization and digestive characteristics of wheat and potato starches under low moisture conditions using identical processing parameters. The results revealed that potato starch exhibited greater resistance to digestion than wheat starch, with an enzyme hydrolysis rate 18 % to 30 % lower than wheat starch under the same conditions. The analysis of particle size, swelling power, and low-field NMR demonstrated that potato starch required almost 40 % more moisture for full gelatinization than wheat starch, indicating that low-moisture conditions could not meet the significant water demand of potato starch. Additionally, the DSC analysis showed that potato starch had superior thermal stability, with To of 62.13 °C and ΔH of 16.30 (J/g). Subsequently, the microscopy results showed that the partially gelatinized wheat starch had a rough, porous surface, allowing enzymes for direct access to hydrolysis. In contrast, the potato starch had smoother and less damaged particles without visible pores, enzymes had to degrade it progressively, layer by layer. Furthermore, potato starch still exhibited a lower enzyme hydrolysis rate than wheat starch under the same gelatinization levels. Overall, potato starch is more resistant to hydrolysis and gelatinization in low-moisture environments, making potato starch suitable for low-digestibility products like potato biscuits or chips.


Assuntos
Solanum tuberosum , Amido , Triticum , Triticum/química , Amido/química , Solanum tuberosum/química , Hidrólise , Digestão , Água/química , Tamanho da Partícula , Gelatina/química , Temperatura
4.
Environ Sci Pollut Res Int ; 31(14): 21458-21470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388981

RESUMO

The Qinghai-Tibet Plateau (QTP) is characterized by an extreme hypoxia, which may lead to lack of sufficient oxygen for compost production, and thus seriously affecting the compost quality. The moisture content (MC) has a direct effect on the oxygen content of composting pile. At present, the research on the optimum moisture content of compost production on the QTP is still lacking. This study aimed to investigate the influences of MC on fermentation quality of sheep manure composting on the QTP and to further analyze the changes of microbial metabolic function and enzyme activity under different MC. Composting experiment with low MC (45%) and conventional MC (60%) was conducted in both summer and autumn. The results showed that the composting efficiency of 45% MC was better than 60% in both seasons, which was mainly manifested as longer high-temperature period (summer:16 d vs 14 d, autumn: 7 d vs 2 d), higher germination index (summer:136.1% vs 128.6%, autumn:103.5% vs 81.2%), and more humus synthesis (summer:159.8 g/kg vs 151.2 g/kg, autumn:136.1 k/kg vs 115.5 k/kg). The 45% MC can improve microbial metabolism, including increasing the abundance of functional genes involved in carbohydrate metabolism, amino acid metabolism, and nucleotide metabolism and improving the activities of cellulase, ß-glucosidase, protease, polyphenol oxidase, and peroxidase. In conclusion, 45% MC can improve the fermentation efficiency and products quality of sheep manure compost on QTP.


Assuntos
Compostagem , Solo , Animais , Ovinos , Esterco , Tibet , Oxigênio
5.
Microorganisms ; 12(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257930

RESUMO

Controlling Salmonella contamination in dry food processing environments represents a significant challenge due to their tolerance to desiccation stress and enhanced thermal resistance. Blue light is emerging as a safer alternative to UV irradiation for surface decontamination. In the present study, the antimicrobial efficacy of ultra-high irradiance (UHI) blue light, generated by light-emitting diodes (LEDs) at wavelengths of 405 nm (841.6 mW/cm2) and 460 nm (614.9 mW/cm2), was evaluated against a five-serovar cocktail of Salmonella enterica dry cells on clean and soiled stainless steel (SS) surfaces. Inoculated coupons were subjected to blue light irradiation treatments at equivalent energy doses ranging from 221 to 1106 J/cm2. Wheat flour was used as a model food soil system. To determine the bactericidal mechanisms of blue light, the intracellular concentration of reactive oxygen species (ROS) in Salmonella cells and the temperature changes on SS surfaces were also measured. The treatment energy dose had a significant effect on Salmonella inactivation levels. On clean SS surfaces, the reduction in Salmonella counts ranged from 0.8 to 7.4 log CFU/cm2, while, on soiled coupons, the inactivation levels varied from 1.2 to 4.2 log CFU/cm2. Blue LED treatments triggered a significant generation of ROS within Salmonella cells, as well as a substantial temperature increase in SS surfaces. However, in the presence of organic matter, the oxidative stress in Salmonella cells declined significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold the antimicrobial effectiveness observed on clean SS. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. These results indicate that LEDs emitting UHI blue light could represent a novel cost- and time-effective alternative for controlling microbial contamination in dry food processing environments.

6.
J Food Sci ; 89(2): 1143-1153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193188

RESUMO

The use of air jet impingement to remove residues from surfaces in food manufacturing operations offers an alternative to the use of water and liquid cleaning agents. During this investigation, air impingement was used to remove nonfat dry milk (NFDM) residues from a stainless-steel surface. The influence of the water activity (aw ) of the residue, the time after the residue reached an equilibrium water activity, and the thickness of residue at the time of removal from the surface have been investigated. All three factors had a significant effect on the time for removal. An increase in the water activity, the time at equilibrium, the sample thickness, or a combination of all three resulted in an increase in the time required to remove the deposits. Visible changes in the structure of deposits were observed as NFDM samples equilibrated to water activities above 0.43. NFDM residues with water activities less than 0.33 were removed within 1 s of using air impingement regardless of wall shear stress. When the water activities were greater than 0.50, the thickness of deposit was greater than 1 mm, and the time after reaching an equilibrium water activity was over 7 days, more than 5 min of air impingement with wall shear stress over 9.48 Pa was required to remove the residue. The results from these experiments indicated that air impingement has the potential to provide effective cleaning in manufacturing facilities for low-moisture foods. PRACTICAL APPLICATION: The introduction of water in low-moisture food environments is often undesirable due to the possibility of pathogenic microorganism growth. The normal cleaning operations in the food industry use water as a cleaning agent. This study evaluates the application of air impingement technology as a dry-cleaning method.


Assuntos
Leite , Aço Inoxidável , Animais , Leite/química , Aço Inoxidável/análise , Indústria de Processamento de Alimentos , Água/análise , Alérgenos/análise
7.
Int J Food Microbiol ; 413: 110556, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38244386

RESUMO

Milk powder is a convenient, shelf-stable food ingredient used in a variety of food products. However, pathogenic bacteria can be present and survive during prolonged storage, leading to outbreaks of foodborne diseases and product recalls. Radio frequency (RF) heating is a processing technology suitable for bulk treatment of milk powder, aiming at microbial inactivation. This study investigates the RF inactivation of Salmonella Typhimurium and Listeria monocytogenes in two types of milk powder; skimmed and whole milk powder. Specifically, the aims were to (i) examine the influence of the powder's composition on bacterial inactivation, (ii) evaluate the response of bacteria with different Gram properties (Gram positive and Gram negative) and (iii) verify the use of Enterococcus faecium as a surrogate for the two microorganisms for the specific RF process. In order to examine exclusively the influence of RF, a non-isothermal temperature profile was used, employing solely different RF energy levels to heat the product to the target temperatures. A log-linear model with a Bigelow-type temperature dependency was fitted to the experimental data. S. Typhimurium was less susceptible to RF treatments in comparison to L.monocytogenes, demonstrating a higher inactivation rate (k) and higher percentage of sublethal injury. A higher k was also observed for both microorganisms in the whole milk powder, indicating that the increased fat content and decreased levels of lactose and protein in the milk powder had an adverse impact on the microbial survival for both pathogens. The surrogate microorganism E. faecium successfully validated the microbial response of the two microorganisms to RF treatments. In general, a low heating rate RF-only process was successful in inactivating the two foodborne pathogens in skimmed and whole milk powder by 4 log(CFU/g).


Assuntos
Listeria monocytogenes , Salmonella typhimurium , Animais , Contagem de Colônia Microbiana , Pós , Leite/microbiologia , Microbiologia de Alimentos
8.
J Food Prot ; 87(1): 100198, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007093

RESUMO

In late 2020, dried wood ear mushrooms, a low-moisture food ingredient that had been imported and sold to restaurants, were linked to a foodborne outbreak of Salmonella Stanley, which sickened 55 individuals across the United States. These mushrooms are commonly used in Asian cuisine. It is unclear if the contaminated dried wood ear mushrooms that caused the foodborne illnesses were improperly handled during preparation. The objectives of this study are to assess the handling practices, risk perceptions, and food recall experiences of dried wood ear mushrooms in restaurant kitchens among Asian restaurant managers and chefs. We conducted a series of telephone interviews with managers and chefs of Asian restaurants in the United States who used dried wood ear mushrooms in making dishes. After reaching information saturation, a total of 25 restaurant managers and chefs participated in the interview. Our results showed that 76% of the participants did not keep track of package information, such as expiration date and lot number, and many participants reported using cold water for rehydration. Wood ear mushrooms were blanched before being used in all cold dishes and most stir-fry dishes, but less commonly in stew or ramen. Some participants (16%) did not view dried wood ear mushrooms as a raw food ingredient, and 16% did not perceive that low-moisture food ingredients constituted microbiological food safety risks. The majority of the participants had heard of food recalls, but only 17% knew about the dried wood ear mushroom recall, and even fewer had heard of food recalls of other low-moisture foods, like nuts and seeds (9%), and flour (4%). While this study shares similarities with previously published studies evaluating the handling practices of consumers and restaurant employees with respect to meat and poultry, it makes a distinctive contribution to the field of food safety as the first-of-its-kind to study the handling practices of a low-moisture food ingredient: dried wood ear mushrooms. This unique ethnic food ingredient has been associated with a past outbreak and multiple recalls in the United States. The findings of the study show the need to develop food safety educational programs that are tailored toward Asian restaurant food handlers and provide guidance to develop risk communication strategies for this niche audience.


Assuntos
Agaricales , Auricularia , Ingredientes de Alimentos , Doenças Transmitidas por Alimentos , Humanos , Estados Unidos , Restaurantes , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/epidemiologia
9.
Int J Biol Macromol ; 256(Pt 1): 128439, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013076

RESUMO

Low-moisture extrusion (LME) can modify starch structures and enrich their functionality. These LME-made starches may efficiently form inclusion complexes (ICs) with hydrophobic guest molecules, which is profoundly impacted by the guest molecule concentration. In this work, the influence of glycerin monostearin (GMS) concentration on the structure and in vitro digestibility of pre-extruded starch-GMS complexes was investigated. The results showed that LME pretreatment increased the complex index of high-amylose starch with GMS by 13 %. The appropriate GMS concentrations produced ICs with high crystallinity and excellent thermostability. The presence of IC retarded amylose retrogradation and dominated bound water in starches. In addition, highly crystallized ICs were resistant to enzymolysis and had a higher proportion of resistant starch. The acquired knowledge would provide a better understanding of the LME-modified starch and GMS concentration-regulated IC formation.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Glicerol , Glicerídeos/química
10.
Int J Food Microbiol ; 406: 110375, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660435

RESUMO

Wheat, the raw material for flour milling, can be contaminated with enteric pathogens, leading to outbreaks linked to flour. In previous lab-scale studies, vacuum steam treatment was able to reduce Salmonella Enteritidis PT30 and Shiga-toxin producing E. coli (STEC) O121 levels on soft wheat kernels while maintaining flour quality and gluten functionality. This study used a newly designed lab-scale vacuum steam pasteurizer (VSP) to evaluate its efficacy to inactivate multiple strains of Salmonella and STEC on soft wheat by modeling the non-isothermal time-temperature history during treatment and reduction of the microbial populations. The results demonstrated that vacuum steam treatment could effectively disinfect wheat grains inoculated with enteric pathogens. In this study, Salmonella strains were less thermally resistant than STEC strains. The D75°C of Salmonella strains were 2.8 and 3.2 min, and the D75°C of STEC ranged from 3.1 to 4.6 min. E. faecium had a D75°C of 3.3 min, which indicates that it could be used as surrogate for larger scale evaluation of vacuum steam pasteurization in the future but was not conservative compared to some of the STEC strains.


Assuntos
Escherichia coli Shiga Toxigênica , Vapor , Pasteurização/métodos , Triticum , Vácuo , Microbiologia de Alimentos , Salmonella enteritidis
11.
Int J Food Microbiol ; 406: 110405, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37734279

RESUMO

Dry sanitation methods are often limited to physical removal strategies such as brushing or wiping with sanitary cleaning tools. However, the relative efficacy of these approaches to remove microbiota on surfaces, and the risk of transferring cells to other surfaces via the cleaning tool, is unclear. The effect of dry wiping with a single-use towel on the removal of four different bacteria (Salmonella Enteritidis, Enterococcus faecium, Listeria innocua, Escherichia coli) was investigated. We also quantified the number of cells transferred to the towel itself during dry cleaning. Three different surface inoculation methods (spot, glass bead, contaminated milk powder) were assessed and significantly impacted initial surface microbial load. Higher initial counts corresponded to lower transfer coefficients (e.g., proportion of transferred cells). The effect of bacterial identity was significant on reduction after dry wiping for all three inoculation methods. Moreover, both bacterial identity and inoculation method had significant effects on the number of cells transferred to the towel. In most scenarios, dry wiping resulted in a reduction <1.0 log CFU/coupon. Although, on surfaces inoculated via contaminated milk powder, reductions of up to 1.6 ± 0.3 log CFU/coupon were obtained. Overall, E. faecium transferred more readily to the towel. These results may help guide experimental design for future research on dry sanitation.


Assuntos
Microbiologia de Alimentos , Salmonella enteritidis , Contagem de Colônia Microbiana , Saneamento/métodos , Pós
12.
J Food Prot ; 86(9): 100137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532225

RESUMO

Contamination of wheat flours with Shiga toxin-producing E. coli (STEC) is a concern for the milling industry. Milling-specific interventions are needed to address this food safety hazard. The objectives for this study were to determine the efficacy of bacteriophage treatment in reducing wheat STEC contamination during tempering, and assess its effects on flour milling and baking quality. Bacteriophage solutions were prepared by mixing sterile water with the bacteriophage treatment at the following levels: 1 × 106 (0.1%), 2.5 × 106 (0.25%), 5 × 106 (0.5%), 1 × 107 (1.0%), and 1 × 108 (10%) PFU/g wheat dosage. Sterile water (0%) was used as the control. Predried wheat grains were inoculated with STEC (O121 and O26) at 5.0 and 6.0 log CFU/g to restore its original moisture content followed by resting for 24 h. Inoculated grains were then tempered (16% moisture, 24 h) using the prepared bacteriophage solutions. Grains were sampled at 0.5, 1, 2, 6, 12, 18, and 24 h during tempering to determine STEC concentration. The effects of the phage solutions on the flour milling and baking quality were also tested. Tempering time, bacteriophage dose, and their interaction had significant effects on phage efficacy (P < 0.05), with better reductions observed at longer tempering times and higher bacteriophage doses. The use of phage solutions reduced (P < 0.05) wheat STEC concentration after tempering, with the 10% treatment (3.2 logs) achieving ahigher reduction than the 1% (2.4 logs) treatment under similar phage preparation. Phage tempering (including at the highest concentration examined, i.e., 10%) produced wheat flours with comparable quality to the control. Phage-treated wheat flour resulted in breads with finer crumb structure, and comparable texture compared to the control. Phage tempering is a viable intervention for wheat milling as it reduced STEC loads of wheat with no detrimental effects to flour milling and baking quality.


Assuntos
Bacteriófagos , Escherichia coli Shiga Toxigênica , Farinha , Triticum , Toxina Shiga , Água
13.
Foods ; 12(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37628070

RESUMO

The use of blue light-emitting diodes (LEDs) is emerging as a promising dry decontamination method. In the present study, LEDs emitting ultra-high irradiance (UHI) density at 405 nm (842 mW/cm2) and 460 nm (615 mW/cm2) were used to deliver high-intensity photoinactivation treatments ranging from 221 to 1107 J/cm2. The efficacy of these treatments to inactivate E. coli O157:H7 dry cells was evaluated on clean and soiled stainless steel and cast-iron surfaces. On clean metal surfaces, the 405 and 460 nm LED treatment with a 221 J/cm2 dose resulted in E. coli reductions ranging from 2.0 to 4.1 log CFU/cm2. Increasing the treatment energy dose to 665 J/cm2 caused further significant reductions (>8 log CFU/cm2) in the E. coli population. LED treatments triggered a significant production of intracellular reactive oxygen species (ROS) in E. coli cells, as well as a significant temperature increase on metal surfaces. In the presence of organic matter, intracellular ROS generation in E. coli cells dropped significantly, and treatments with higher energy doses (>700 J/cm2) were required to uphold antimicrobial effectiveness. The mechanism of the bactericidal effect of UHI blue LED treatments is likely to be a combination of photothermal and photochemical effects. This study showed that LEDs emitting monochromatic blue light at UHI levels may serve as a viable and time-effective method for surface decontamination in dry food processing environments.

14.
J Food Prot ; 86(9): 100132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37468108

RESUMO

Tree nuts, a low-moisture food, are typically perceived as being a low risk for foodborne illness. In the past five decades, the consumption of tree nuts (dry, soaked, or as nut-based dairy analogs [NBDA]) has increased along with corresponding foodborne illness outbreaks and recalls associated with these products. We developed an online survey to assess tree nut handling practices of U.S. consumers, and to select study participants who have soaked tree nuts and/or made NBDA at home. We distributed our initial survey questions in October 2021 to a convenience sample (n = 12) to test for clarity and comprehension. In January 2022, participants (n = 981) who met the criteria completed the survey. The most popular soaked tree nuts were almonds (54%), followed by cashews (36%), walnuts (32%), and pistachios (22%). Participants soaked tree nuts for direct consumption (67%) and during the preparation of NBDA (80%). Participants soaked tree nuts under refrigerated conditions for 1-24 h (22%), on the countertop at room temperature (est. 65-75°F [18-24°C]) for 1-5 h (21%), or at room temperature for 12 h or more (6%); 16% used a hot or boiling water, short time treatment. Some participants added acid (28%) or salt (25%) to the soaking water. Among those participants who dried their tree nuts after soaking (63%), 89% reported drying at a temperature lower than 46°C (115°F). Some participants (34%) used their tree nuts to make fermented dairy analogs (e.g., "cheese" or "yogurt") by adding "probiotics" (56-86%) or a yogurt starter culture (37-99%), respectively, and then, most frequently, holding at or below 20°C (68°F) for 12 h or less (29%). The safety of many of these practices has not been adequately investigated, but the findings of this study will inform future risk assessment and risk modeling studies on tree nut food safety in home kitchen settings.


Assuntos
Juglans , Prunus dulcis , Humanos , Nozes , Medição de Risco , Temperatura
15.
Compr Rev Food Sci Food Saf ; 22(4): 3105-3129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199492

RESUMO

Food preservation is a critical issue in ensuring food safety and quality. Growing concern around industrial pollution of food and demand for environmentally sustainable food has led to increased interest in developing effective and eco-friendly preservation techniques. Gaseous ClO2 has gained attention for its strong oxidizing properties, high efficacy in microorganism inactivation, and potential for preserving the attributes and nutritional quality of fresh food while avoiding the formation of toxic byproducts or unacceptable levels of residues. However, the widespread use of gaseous ClO2 in the food industry is limited by several challenges. These include large-scale generation, high cost and environmental considerations, a lack of understanding of its mechanism of action, and the need for mathematical models to predict inactivation kinetics. This review aims to provide an overview of the up-to-date research and application of gaseous ClO2 . It covers preparation methods, preservation mechanisms, and kinetic models that predict the sterilizing efficacy of gaseous ClO2 under different conditions. The impacts of gaseous ClO2 on the quality attributes of fresh produce and low-moisture foods, such as seeds, sprouts, and spices, are also summarized. Overall, gaseous ClO2 is a promising preservation approach, and future studies are needed to address the challenges in large-scale generation and environmental considerations and to develop standardized protocols and databases for safe and effective use in the food industry.


Assuntos
Desinfetantes , Gases , Gases/farmacologia , Contagem de Colônia Microbiana , Desinfetantes/química , Cinética , Conservação de Alimentos/métodos , Sementes
16.
Int J Food Microbiol ; 399: 110253, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37210955

RESUMO

This study was conducted to compare the effects of ultraviolet light (UV), chemical sanitizers, and heat treatments on Salmonella inactivation and preservation of almond quality. Whole, skinless, and sliced almonds, representing different shape and surface topography, were inoculated with a Salmonella cocktail consisting of S. Montevideo, S. Newport, S. Typhimurium, S. Heidelberg, and S. Enteritidis. Inoculated almonds (50 g) were treated by UV (30 mW/cm2, 30 or 60 min), 75 °C heat (up to 150 min), and chemical sanitizers (3 % hydrogen peroxide (H2O2) and 1 % cetylpyridinium chloride (CPC), 30 or 60 min) alone or in combinations. Uninoculated almonds were similarly treated for analyzing color, visual appearance, and weight changes. In general, UV treatment alone was ineffective in inactivating Salmonella; the 30- and 60-min UV treatments reduced Salmonella by 1.3 (± 0.1) and 1.7 (± 0.1), 2.7 (± 0.2) and 3.3 (± 0.1), and 1.3 (± 0.1) and 1.7 (± 0.1) log CFU/g on whole, skinless, and sliced almonds, respectively. Prior wetting of almonds with water and chemical solutions in a few cases significantly (P < 0.05) increased the UV inactivation of Salmonella. The most pronounced Salmonella killing effect achieved by the combined treatments were: 1-min H2O2 dipping followed by 60-min UV treatment for whole (3.0 logs) and skinless almonds (3.8 logs) and 1-min CPC dipping followed by 60-min UV treatment for sliced almonds (3.0 logs). However, none of those achieved >4 log reductions of Salmonella as required by FDA. The 30-min UV treatment produced discolored but overall acceptable almonds, whereas the 60-min UV treatment led to deteriorated almonds including a dark color, oil extraction, and shrunk kernel size. Prior wetting reduced the sample weight loss but caused local burning and kernel cracking. A sequential approach of a 60-min 75 °C heat treatment and two 30-min wet UV treatments successfully reduced Salmonella by >4 logs, but more severe kernel cracking occurred. In contrast, a single heat treatment of vacuum packaged whole almonds at 75 °C for 150 min was capable of achieving >5 log reductions of Salmonella while preserving almond color and visual qualities and minimizing weight loss. These results clearly demonstrated that the heat treatment was a much better processing technology than UV and sanitizers for raw almond pasteurization.


Assuntos
Prunus dulcis , Temperatura Alta , Contagem de Colônia Microbiana , Salmonella enteritidis , Peróxido de Hidrogênio/farmacologia , Raios Ultravioleta , Microbiologia de Alimentos
17.
J Food Prot ; 86(8): 100109, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257696

RESUMO

Raw materials associated with foodborne illness outbreaks are rarely available for evaluation. The levels and distribution of Salmonella were determined in naturally contaminated raw cashews linked to a salmonellosis outbreak associated with a fermented cashew cheese analog. Two unopened 22.7-kg boxes from a single lot of cashew kernel pieces were each divided into seven approximately equal units, 14 in total. Three 10-g subsamples per unit (n = 21) were evaluated for aerobic plate count (APC), coliform counts, and Escherichia coli counts, and 10 50-g subsamples per unit (n = 70) were enriched for the presence of Salmonella. Presumptive Salmonella-positive colonies were confirmed using CHROMagar Salmonella and real-time PCR (invA) and then serotyped using antigenic methods and genome sequencing prediction tools. APC and coliform counts ranged from 1.81 to 5.47 (mean 2.44 ± 0.63) log CFU/g and 0.60 to 5.20 (mean 1.74 ± 0.80) log CFU/g, respectively. Salmonella was recovered from four units in Box 1 and all seven units in Box 2. One of the 10 subsamples was positive in all but four of the positive units; one (Box 1) and three (Box 2) units had two positive subsamples. The level of Salmonella in the two boxes combined was 0.0023 most probable number/g (95% confidence interval [0.0014, 0.0038]). Salmonella Urbana was isolated from three of five positive subsamples in Box 1 and eight of 10 positive subsamples in Box 2. Salmonella Fresno and Vinohrady were unique to single subsamples from Box 1, and Salmonella Nima was isolated from two subsamples from Box 2. Of the four serovars recovered, Salmonella Urbana and Salmonella Vinohrady were in common with outbreak-associated clinical or product isolates. Understanding the distribution and concentration of Salmonella in naturally contaminated cashews provides important information for hazard analysis and risk assessments for soaked and fermented cashew products.


Assuntos
Anacardium , Intoxicação Alimentar por Salmonella , Microbiologia de Alimentos , Salmonella , Intoxicação Alimentar por Salmonella/epidemiologia , Escherichia coli , Bactérias Gram-Negativas , Contagem de Colônia Microbiana
18.
Food Sci Biotechnol ; 32(5): 659-669, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009040

RESUMO

In this study, textured vegetable protein (TVP) based on soy protein isolate, wheat gluten, and corn starch was prepared at a 5:3:2 (w/w) ratio using a low-moisture extrusion process. To evaluate the effects of extrusion parameters, die temperature and screw rotation speed, on the properties of TVP, these two parameters were manipulated at a constant barrel temperature and moisture content. The results indicated that increasing the die temperature increased the expansion ratio while decreasing the density of the extrudates. Simultaneously, increasing the screw rotation speed clearly increased the specific mechanical energy of the TVP. Furthermore, mathematical modelling suggested that the expansion ratio increases exponentially to the die temperature. However, extreme process conditions bring about a decrease in water absorption capacity and expansion ratio, as well as undesirable texture and microstructure. The results suggested that the properties of SPI-based TVP are directly influenced by the extrusion process parameters, screw speed and die temperature. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01207-8.

19.
Microbiol Spectr ; 11(3): e0529322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37017552

RESUMO

Contamination with Salmonella spp. and Listeria monocytogenes is concerning across low-moisture food (LMF)-processing environments due to the pronounced survival of these organisms under dry conditions. This study treated desiccated bacteria with acetic acid delivered by oil with and without water-in-oil (W/O) emulsion. The influences of cellular desiccation, emulsion water concentration, water activity (aw), and treatment temperature were investigated. Acetic acid dissolved in oil (i.e., acidified oil) showed low levels of antimicrobial efficacy. After treatment with acidified oil (200 mM acetic acid at 22°C for 30 min), Salmonella enterica serovar Enteritidis phage type 30 cells desiccated to 75% equilibrium relative humidity (ERH) and 33% ERH were reduced by 0.69 and 0.05 log CFU/coupon, respectively. The dispersion of a low level of water (≥0.3%, vol/vol) within the acidified oil with the surfactant (i.e., acidified W/O emulsion) significantly enhanced the antimicrobial efficacy. After treatment with the acidified W/O emulsion (200 mM acetic acid at 22°C for 20 min), desiccated Salmonella (4-strain cocktail) and L. monocytogenes (3-strain cocktail) cells were reduced by >6.52 log most probable number (MPN)/coupon, regardless of the desiccation levels. Increased efficacy was observed with temperature elevation. Reduced efficacy was observed when glycerol was added to the aqueous phase of the emulsion to decrease the solution aw, indicating that the enhanced efficacy of the acidified W/O emulsion was associated with differential osmotic pressure. The antimicrobial mechanism may be due to the membrane disruption induced by acetic acid, in combination with the hypoosmotic stress provided by W/O emulsion, creating cellular lysis, as illustrated by electron micrographs. IMPORTANCE Aqueous-based cleaning and sanitation are undesirable in processing facilities that manufacture low-moisture foods such as peanut butter and chocolate. Alcohol-based sanitization is advantageous because it leaves no residue on the contact surface but requires the processing facility to close temporarily due to flammability. At >6.52 log kill of desiccated Salmonella and Listeria monocytogenes cells, the developed oil-based formulation has the potential to be an effective dry sanitation method.


Assuntos
Ácido Acético , Microbiologia de Alimentos , Emulsões/farmacologia , Ácido Acético/farmacologia , Água/análise , Salmonella , Contagem de Colônia Microbiana
20.
Anim Reprod Sci ; 252: 107227, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027991

RESUMO

This experiment evaluated reproductive and productive responses of beef cows receiving self-fed low-moisture blocks (LMB) enriched or not with Ca salts of soybean oil (CSSO) throughout the breeding season. Non-pregnant, suckled multiparous Angus-influenced cows were assigned to a fixed-time artificial insemination (AI) protocol (day -10 to 0) followed by natural service (day 15-70). Cows were managed in 12 groups (46 ± 4 cows/group) maintained in individual pastures, and groups received LMB enriched with 25 % (as-fed basis) of CSSO or ground corn (CON) from day - 10 to 100. Both treatments were designed to yield a daily LMB intake of 0.454 kg/cow (as-fed basis). Cows receiving CSSO had greater (P < 0.01) mean concentrations of ω-6 fatty acids in plasma samples collected on days 0 and 55. Cows receiving CSSO had greater (P = 0.05) pregnancy rate to fixed-time AI (67.2 vs. 59.3 %), whereas final pregnancy rate did not differ (P = 0.92) between treatments. Pregnancy loss was less (P = 0.03) in CSSO cows (4.50 vs. 9.04 %), which also calved earlier during the calving season (treatment × week; P = 0.04). Weaning rate tended to be greater (P = 0.09) in CSSO (84.8 vs. 79.4 %), although calf weaning age and weight did not differ (P ≥ 0.72) between treatments. Kilos of calf weaned/cow exposed was greater (P = 0.04) in CSSO cows (234 vs. 215 kg). Therefore, supplementing CSSO to beef cows via LMB during the breeding season improved their reproductive and overall productivity during a cow-calf cycle.


Assuntos
Dieta , Suplementos Nutricionais , Gravidez , Feminino , Bovinos , Animais , Dieta/veterinária , Óleo de Soja/farmacologia , Sais , Melaço , Melhoramento Vegetal , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA