Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.136
Filtrar
1.
Chemistry ; : e202402025, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087575

RESUMO

In this work, a novel type of fluorine-lean proton exchange membranes is presented, using sulfonamide-sulfonimide functional groups for ion conduction. These groups are constructed on a polystyrene backbone for simple and cost-efficient usage as well as rapid scalability. The polymer is further tailored by adjusting the sulfonamide functionality with various end-groups, namely pentafluorophenyl, 4-fluorophenyl, butyl and octyl groups. These groups affect the pKa, leading to pKa values of 5.7 for the pentafluorophenyl substitution and pKa 10.5 for the alkyl chain. The glass transition temperature of the sulfonamide homopolymers can be reduced from Tg = 151°C (Pentafluorophenyl) to 49°C (Octyl), making the ionomer more flexible at room temperature. The combination of the non-swelling sulfonamide further mitigates the high water uptake of the sulfonimide while maintaining the nominal ion exchange capacity. This combination leads to extremely high proton conductivities with up to σ = 283 mS cm-1 at room temperature, which is clearly outperforming Nafion and approaches values for acid doped systems. This approach can pave the way to a novel type of ion conducting class in proton exchange membrane fuel cells.

2.
Chemistry ; : e202402382, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087671

RESUMO

Photo-regulated transmembrane ionophores enable spatial and temporal control over activity, offering promise as targeted therapeutics. Key to such applications is control using bio-compatible visible light. Herein, we report red-shifted azobenzene-derived synthetic anionophores that use amber or red light to trigger (E)-(Z) photoisomerisation and activation of transmembrane chloride transport. We demonstrate that by tuning the thermal half-life of the more active, but thermodynamically unstable, Z isomer to relax on the timescale of minutes, transient activation of ion transport can be achieved by activating with solely with visible light and deactivating by thermal relaxation.

3.
Eur J Ophthalmol ; : 11206721241265998, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094557

RESUMO

PURPOSE: To assess the associations between visual acuity (VA) and retinal thickness in age-related macular degeneration (AMD) eyes treated with anti-vascular endothelial growth factor (VEGF) therapy. METHODS: Sixty-eight patients with neovascular AMD (68 eyes) undergoing anti-VEGF therapy with two years of follow-up imaging data after the initiation of treatment were retrospectively included. Linear and nonlinear regression analyses with curve fitting estimation were performed to explore the relationship between visual acuity and OCT-based parameters at the 3-month and 24-month follow-up visits. Regression analyses were also performed between visual acuity and the retinal thickness deviation which was calculated as the absolute value of the difference between measured and normative retinal thickness values. RESULTS: The VA was not associated with either foveal (R2 = 0.011 and p = .401 at 3 months; R2 = 0.032 and p = .142 at 24 months) or parafoveal (R2 = 0.045 and p = .081 at 3 months; R2 = 0.050 and p = .055 at 24 months) retinal thicknesses. Compared with the linear models, a quadratic function yielded a relative increase in the R2 coefficients. Conversely, the VA was linearly associated with foveal retinal thickness deviation (R2 = 0.041 and p = .037 at 24 months) and parafoveal retinal thickness deviation (R2 = 0.062 and p = .040 at 3 months; R2 = 0.088 and p = .014 at 24 months) values. CONCLUSIONS: Although there was no linear relationship between retinal thickness and VA, a weak but statistically significant linear relationship could be observed when a retinal thickness deviation was considered. This suggests that deviation-based parameters may be beneficial for structure-function correlations in the context of anti-VEGF therapy for neovascular AMD.

4.
ChemSusChem ; : e202401228, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092461

RESUMO

We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH4-facilitated coating strategy. The as-obtained GDEs can facilitate the electrochemical CO2 reduction reaction (CO2RR) at Cu active sites that are presented inside a defined and electrically conductive pore system. When employing them as free-standing cathodes in a CO2 flow electrolyzer, we achieved >70% Faradaic efficiencies for CO2RR products at up to 200 mA/cm2. We further demonstrated that deposition of a dense Cu layer on top of the membrane leads to obstruction of the underlying pore openings, inhibiting an excessive wetting of the pore pathways that transport gaseous CO2. However, the presentation of Cu inside the pore system of our novel membrane electrodes increased the C2H4/CO selectivity by a factor of up to 3 compared to Cu presented in the dense layer on top of the membrane. Additionally, we found that gaseous CO2 could still access Cu in macropores after wetting with electrolyte, while CO2RR was completely suppressed in wetted nm-scale pores.

5.
Food Chem ; 460(Pt 3): 140713, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39116775

RESUMO

Chitosan, as a kind of naturally occurring green and degradable material for the preservation of perishable foods, was investigated in this study with the objective of enhancing its preservation performances. Herein, lignin was modified using the solvent fractionation method (modified lignin, ML, including ML1-ML3), while natural clinoptilolite zeolite was modified using the alkali modification method (modified clinoptilolite zeolite, MCZ, including MCZ1-MCZ5). After optimizing the conditions, it was discovered that incorporating both ML3 and MCZ3 into pure chitosan-based membranes might be conducive to fabricate chitosan-based composite membranes for the preservation of perishable foods. As-prepared composite membranes possessed better visible light transmittance, antioxidant activity, and carbon dioxide/oxygen selectivity, resulting in improved preservation effects on the model perishable foods such as bananas, cherry tomatoes, and cheeses. These findings might indicate promising applications for chitosan-based composite membranes with modified lignin and zeolite in the field of eco-friendly degradable materials for the preservation of perishable foods.

6.
Acta Pharmacol Sin ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117969

RESUMO

Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.

7.
Comput Struct Biotechnol J ; 23: 2851-2860, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39100803

RESUMO

Background: Preterm premature rupture of membranes (PPROM) contributes to over one-third of preterm births, and PPROM infants are more susceptible to infections. However, the risk factors remain poorly understood. We here aim to investigate the association of duration of premature rupture of membranes (PROM) and environmental microbiota with the gut microbiota and infection in PPROM infants. Methods: Forty-six premature infants were recruited from two hospitals, and infant fecal and environmental samples were collected. 16 s rRNA sequencing was performed to analyze the fecal and environmental microbiome. Human inflammatory cytokines in cord vein plasma were measured. Results: The gut microbiota composition of PPROM infants was different from that of non-PPROM infants, and the microbiome phenotypes were predicted to be associated with a higher risk of infection, further evidenced by the significantly increased levels of IL-6 and IL-8 in cord vein plasma of PPROM infants. The diversity of the gut microbiota in PPROM infants increased significantly as the duration of PROM excessed 12 h, and Pseudomonas contributed significantly to the dynamic changes. The Pseudomonas species in the gut of PPROM infants were highly homologous to those detected in the ward environment, suggesting that prolonged PROM is associated with horizontal transmission of environmental pathogens, leading to a higher risk of infection. Conclusions: This study highlights that the duration of PROM is associated with the accumulation of environmental pathogens in the gut of PPROM infants, which is a risk factor for nosocomial infections. Improving environmental hygiene could be effective in optimizing the clinical care of PPROM infants.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39102857

RESUMO

Atomic motion in nanopillars standing on the surface of a silicon membrane generates vibrons, which are wavenumber-independent phonons that act as local resonances. These vibrons couple with the vast majority of the phonon population, including heat-carrying phonons, traveling along the base membrane causing a reduction in the in-plane lattice thermal conductivity. In this work, we examine isolated silicon and gallium nitride nanopillars and for each compare the vibrons density of states (DOS) to those of phonons in an isolated version of the silicon membrane. We show that while the conformity of the phonon-vibron DOS distribution between the two components across the full spectrum is a key factor in reducing the thermal conductivity of the assembled nanostructure, the presence of an intense vibron population at more dominant low frequencies plays a competing role. We report predictions from molecular dynamics simulations showing lower thermal conductivities for a silicon membrane with gallium-nitride nanopillars compared to a silicon membrane with silicon nanopillars.

9.
Materials (Basel) ; 17(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124425

RESUMO

Due to their excellent properties, antimicrobial fiber membranes are widely applied in bioprotective materials. This work addresses the preparation of thermoplastic polyurethane (TPU)-based fiber membranes with active antimicrobial properties. 2-hydroxypropyl trimethyl ammonium chloride-terminated hyperbranched polymer (HBP-HTC) was synthesized and used as an antimicrobial agent. The fiber membranes were obtained by electrospinning a mixed solution of HBP-HTC and TPU. Different electrospinning conditions were investigated, such as the spinning voltage and drum rotation speed. The fiber membrane prepared under a 22 kV anode voltage and 100 rpm rotation speed had an average fiber diameter of 1.66 µm with a concentrated diameter distribution. Antibacterial tests showed that when the fiber membrane was loaded with 1500 mg/kg of HBP-HTC, the antibacterial rates of E. coli as well as S. aureus both reached 99.99%, exhibiting excellent proactive antimicrobial performance. Moreover, the protective performance of the fiber membrane was outstanding, with a filtration efficiency of 99.9%, a hydrostatic pressure resistance greater than 16,758 Pa, and a moisture permeability of 2711.0 g⋅(m2⋅d)-1.

10.
Polymers (Basel) ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125210

RESUMO

The focus of the study in this article is analyzing the electrochemical properties of molybdenum disulfide on miscible poly(methyl methacrylate)-poly(lactic acid) blends for supercapacitors. The interaction between molybdenum disulfide and miscible poly(methyl methacrylate)-poly(lactic acid) blends, affinity toward water, surface morphology, and mechanical properties are inspected by Fourier transform infrared spectroscopy, water contact angle, scanning electron microscopy, and universal testing machine, respectively. Among the developed membranes, 0.75 wt% of molybdenum disulfide on poly(methyl methacrylate)-poly(lactic acid) shows better electrochemical performances. It exhibits a maximum specific capacitance of 255.5 F g-1 at a current density of 1.00 mA g-1, maximum energy density of 22.7 Wh kg-1, and maximum power density of 360 W kg-1. A cycle study reveals 92% capacitance retention after 2500 cycles. The designed supercapacitor device shows a maximum specific capacitance of 1240 µF g-1 at a current density of 0.5 µA g-1, maximum energy density of 43 µWh kg-1, and maximum power density of 700 µW kg-1. Flexible membranes of molybdenum disulfide are expected to be a potent combination for supercapacitor applications.

11.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125227

RESUMO

In response to the phenomenon of interlayer transport channel swelling caused by the hydration of oxygen-containing functional groups on the GO membrane surface, a moderate heat treatment method was employed to controllably reduce the graphene oxide (GO) membrane and prepare a reduced GO composite nanofiltration membrane (mixed cellulose membrane (MCE)/ethylenediamine (EDA)/reduced GO-X (RGO-X)). The associations of different heat treatment temperatures with the hydrophilicity, interlayer structure, permeability and dye/salt rejection properties of GO membranes were systematically explored. The results indicated that the oxygen-containing groups of the GO membrane were partially eliminated after heat treatment, and the hydrophilicity was weakened. This effectively weakened the hydration between the GO membrane and the water molecules and inhibited the swelling of the oxidized graphene membrane. In the dye desalination test, the MCE/EDA/RGO membrane exhibited an ultra-high rejection rate of over 97% for methylene blue (MB) dye molecules. In addition, heat treatment increased the structural defects of the GO membrane and promoted the fast passage of water molecules via the membrane. In pure water flux testing, the water flux of the membrane remained above 46.58 Lm-2h-1bar-1, while the salt rejection rate was relatively low.

12.
Int J Biol Macromol ; 277(Pt 4): 134460, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102915

RESUMO

Polymicrobial communities are seen to be a sign of health, but they can turn detrimental when an excess of pathogenic species leads to recurring vaginal infections. This microbiological imbalance may decrease women's fertility, increasing also the risk of infection by Human Papillomavirus (HPV) and/or other sexually transmitted infections (STIs). There is a worldwide need for smart/sustainable solutions to tackle these types of infections. Hereupon, we investigated, as a potential solution, the use of crayfish chitosan-based membrane as a mucoadhesive, antimicrobial, biocompatible and biodegradable material. Chitosan was chemically extracted with a process yield of ca. 63 % and a degree of deacetylation of ca. 65 %. Further chitosan was characterized by FTIR, DSC, XRD and zeta potential. Antimicrobial and antioxidant activities were tested by microbicide concentration and ABTS methods. The extracted chitosan was confirmed to be antioxidant and antimicrobial against Escherichia coli, Candida albicans, Staphylococcus aureus (methicillin resistant and susceptible strains). Vaginal films using chitosan extracted from crayfish shells were produced by solvent casting, and the biological profile was tested in simulated vaginal fluid as a proof of concept. The main data showed that the vaginal films prepared were active against several microorganisms responsible for vaginal infections, demonstrating their potential in the field.

13.
Adv Mater ; : e2404164, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091057

RESUMO

The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked ß-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the ß-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.

14.
Plant Cell Physiol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172638

RESUMO

Extracellular vesicles (EVs) are derived from the outer membrane (OM) in Gram-negative bacteria and have diverse physiological functions. EV-mediated secretion of monovinyl protochlorophyllide (MV-Pchlide), the chlorophyll a (Chl) biosynthetic intermediate, was previously reported in a mutant lacking dark-operative Pchlide reductase in the cyanobacterium Leptolyngbya boryana. This study showed a detailed characterization of EVs from the wild-type (WT) of L. boryana grown under photoautotrophic and dark heterotrophic conditions, focusing on the accumulation of Chl intermediates. WT L. boryana cells produce two types of EVs, low-density EVs (L-EVs) and high-density EVs (H-EVs), both under light and dark conditions. L-EVs and H-EVs showed distinct morphological features and protein compositions. L-EVs from cells grown under both light and dark conditions commonly contained carotenoids, ketomyxol glycoside, and zeaxanthin, as major pigments. Based on the protein compositions of EVs and other cellular membrane fractions, L-EVs and H-EVs are probably derived from low-density OM and high-density OM interacting with cell walls, respectively. Fluorescence detection of pigments was applied to EVs, and the two Chl intermediates, protoporphyrin IX and protoporphyrin IX monomethyl ester, were commonly detected in both L-EVs from light- and dark-grown cells, whereas L-EVs from dark-grown cells contained additional MV-Pchlide, MV-protopheophorbide, and pheophorbide. The pigment ratios of L-EVs to the total culture medium of the Chl intermediates were much higher than those of carotenoids, suggesting an active transport of the Chl intermediates from the thylakoid membrane to L-EVs. Cyanobacterial EVs may play a novel role in alleviating the accumulation of Chl intermediates in cells. (248 words).

15.
Am J Reprod Immunol ; 92(2): e13913, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113666

RESUMO

PROBLEM: To determine whether altered concentrations of various inflammation/immune-, acute phase-, extracellular matrix-, adhesion-, and serine protease-related proteins in the amniotic fluid (AF) are independently associated with microbial invasion of the amniotic cavity and/or intra-amniotic inflammation (MIAC/IAI), imminent spontaneous preterm delivery (SPTD; ≤7 days), and major neonatal morbidity/mortality (NMM) in women with early preterm prelabor rupture of membranes (PPROM). METHOD OF STUDY: This was a retrospective cohort study involving 111 singleton pregnant women with PPROM (24-31 weeks) undergoing amniocentesis to diagnose MIAC/IAI. The following proteins were measured in stored AF samples by enzyme-linked immunosorbent assay (ELISA): APRIL, DKK-3, Gal-3BP, IGFBP-2, IL-8, VDBP, lumican, MMP-2, MMP-8, SPARC, TGFBI, TGF-ß1, E-selectin, ICAM-5, P-selectin, haptoglobin, hepcidin, SAA1, kallistatin, and uPA. RESULTS: Multivariate logistic regression analyses revealed that (i) elevated APRIL, IL-8, MMP-8, and TGFBI levels in the AF, reduced lumican and SPARC levels in the AF, and high percentages of samples above the lower limit of quantification for AF TGF-ß1 and uPA were significantly associated with MIAC/IAI; (ii) elevated AF levels of IL-8 and MMP-8 were significantly associated with SPTD within 7 days; and (iii) elevated AF IL-6 levels were significantly associated with increased risk for major NMM, when adjusted for baseline covariates. CONCLUSION: ECM (lumican, SPRAC, TGFBI, and TGF-ß1)- and serine protease (uPA)-associated proteins in the AF are involved in the regulation of the host response to infection/inflammation in the amniotic cavity, whereas AF inflammation (IL-8, MMP-8, and IL-6)-associated mediators are implicated in the development of preterm parturition and major NMM in early PPROM.


Assuntos
Líquido Amniótico , Ruptura Prematura de Membranas Fetais , Humanos , Feminino , Gravidez , Líquido Amniótico/metabolismo , Líquido Amniótico/imunologia , Ruptura Prematura de Membranas Fetais/metabolismo , Adulto , Estudos Retrospectivos , Inflamação/metabolismo , Recém-Nascido , Serina Proteases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Fase Aguda/metabolismo , Nascimento Prematuro , Estudos de Coortes , Corioamnionite/metabolismo , Corioamnionite/imunologia
16.
Front Pharmacol ; 15: 1428409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156106

RESUMO

Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39157934

RESUMO

OBJECTIVE: To determine the value of the Aggregate index of systemic inflammation (AISI) in predicting admission to neonatal intensive care unit (NICU) and chorioamnionitis. METHODS: The present retrospective cohort study with pregnant women who were diagnosed with preterm premature rupture of membranes (PPROM) in the Department of Perinatology, Ministry of Health Ankara City Hospital between January 1, 2021, and June 1, 2023 (n = 357). The patients were categorized into subgroups: (1) cases with (n = 27) or without (n = 330) chorioamnionitis, (2) admission (n = 182) or no admission (n = 175) to NICU; (3) gestational age at birth <28 weeks or 28 weeks or longer; and (4) gestational age at birth <34 weeks or 34 weeks or longer. AISI values were compared between the subgroups, and cut-off values for AISI were determined to predict adverse outcomes. RESULTS: AISI values were significantly higher in the admission to NICU group compared with the no admission to NICU group (707.0 vs 551.2) (P < 0.05). AISI values were also significantly higher in the chorioamnionitis group compared with those without chorioamnionitis (850.3 vs 609.4) (P < 0.05). AISI levels were significantly higher in cases delivered before 28 weeks of gestation compared with the cases delivered at 28 weeks of gestation or later (945.6 vs 604.9) (P < 0.05), and were also significantly higher in cases delivered before 34 weeks of gestation compared with the cases delivered at 34 weeks of gestation or later (715.5 vs 550.1) (P < 0.05). Optimal cut-off values of AISI were found to be 626.19 (74.1% sensitivity, 52.8% specificity), 506.09 (68.9% sensitivity and, 47.7% specificity), and 555.1 (69.8% sensitivity, 48.1% specificity) in predicting NICU admission, chorioamnionitis, and delivery before 28 weeks, respectively. CONCLUSION: The novel inflammatory marker AISI may be used in the prediction of chorioamnionitis and NICU admission in PPROM cases. SYNOPSIS: Aggregate index of systemic inflammation may be used as a novel marker in predicting high-risk for chorioamnionitis and neonatal intensive care unit admission in women with preterm premature rupture of membranes.

18.
J Hazard Mater ; 478: 135464, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39141945

RESUMO

The growing utilization of Traditional Chinese Medicine (TCM) has resulted in an increase in wastewater. Herein, a new kind of organic-inorganic redox mediator membrane by immobilizing γ-FeO(OH) and aloe-emodin(AE) with the characteristic large π-conjugation anthraquinone structure on PVDF membrane was innovatively achieved. AE exhibiting both electron deficiency and redox activity possesses a co-catalyst role in degradation of tannic acid (TA), aiding in the separation of charge carriers through the sequential hydrogenation and dehydrogenation of AE. The removal rates of TA were 92.8 % in the tannic acid solution and 60.3 % in the simulated rhubarb wastewater by the AE-γ-FeO(OH) membrane under PMS+Vis conditions in 45 min. Also, they show a higher recovery of pure water flux and owning good fouling performance. Overall, this current work presents a novel approach for the design and preparation of organic-inorganic photocatalytic composite membrane using readily available natural products for the purification TCM wastewater.

19.
Biochem Biophys Res Commun ; 737: 150533, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39142138

RESUMO

Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.

20.
Chemphyschem ; : e202400395, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161129

RESUMO

The salinity gradient power extracted from the mixing of electrolyte solutions at dierent concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology protable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ∼ 60 pW per pore for positively charged membranes (surface charge σw =160 mC/m2 ) and ∼ 30 pW for negatively charges ones, σw =-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA