Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000421

RESUMO

This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Rutênio/química , Rutênio/farmacologia , Peptídeos/química , Peptídeos/farmacologia
2.
Biomaterials ; 311: 122705, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39047537

RESUMO

Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.


Assuntos
Inibidores Enzimáticos , Tiorredoxina Dissulfeto Redutase , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Domínio Catalítico , Estereoisomerismo , Simulação de Acoplamento Molecular
3.
J Inorg Biochem ; 260: 112672, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39079338

RESUMO

Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 µM and 4 µM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.

4.
Biomolecules ; 14(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785937

RESUMO

Metallodrugs are an important group of medicinal agents used for the treatment of various diseases ranging from cancers to viral, bacterial, and parasitic diseases. Their distinctive features include the availability of a metal centre, redox activity, as well as the ability to multitarget. Diruthenium paddlewheel complexes are an intensely developing group of metal scaffolds, which can securely coordinate bidentate xenobiotics and transport them to target tissues, releasing them by means of substitution reactions with biomolecular nucleophiles. It is of the utmost importance to gain a complete comprehension of which chemical reactions happen with them in physiological milieu to design novel drugs based on these bimetallic scaffolds. This review presents the data obtained in experiments and calculations, which clarify the chemistry these complexes undergo once administered in the proteic environment. This study demonstrates how diruthenium paddlewheel complexes may indeed embody a new paradigm in the design of metal-based drugs of dual-action by presenting and discussing the protein metalation by these complexes.


Assuntos
Complexos de Coordenação , Proteínas , Rutênio , Complexos de Coordenação/química , Rutênio/química , Proteínas/química , Humanos , Oxirredução
5.
ChemMedChem ; 19(15): e202400120, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696276

RESUMO

Mitochondria, recognized as the cellular powerhouses, are indispensable organelles responsible for crucial cellular processes, such as energy metabolism, material synthesis, and signaling transduction. Their intricate involvement in a broad spectrum of diseases, particularly cancer, has propelled the exploration of mitochondria-targeting treatment as a promising strategy for cancer therapy. Since the groundbreaking discovery of cisplatin, the trajectory of research on the development of metal complexes have been marked by continuous advancement, giving rise to a diverse array of metallodrugs characterized by variations in ligand types, metal center properties, and oxidation states. By specifically targeting mitochondria, these metallodrugs exhibit the remarkable ability to elicit various programmed cell death pathways, encompassing apoptosis, autophagy, and ferroptosis. This review primarily focuses on recent developments in transition metal-based mitochondria-targeting agents, offering a comprehensive exploration of their capacity to induce distinct cell death modes. The aim is not only to disseminate knowledge but also to stimulate an active field of research toward new clinical applications and novel anticancer mechanisms.


Assuntos
Antineoplásicos , Complexos de Coordenação , Mitocôndrias , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Morte Celular/efeitos dos fármacos , Estrutura Molecular , Animais , Apoptose/efeitos dos fármacos
6.
ChemMedChem ; 19(14): e202400006, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642018

RESUMO

Triple-negative breast cancer (TNBC) poses challenges in therapy due to the absence of target expression such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Frequently, the treatment of TNBC involves the combination of several therapeutics. However, an enhanced therapeutic effect can be also achieved within a single molecule. The efficacy of raloxifene can be improved by designing a raloxifene-based hybrid drug bearing a 2,2'-bipyridine moiety (2). Integration of platinum(II), palladium(II), and nickel(II) complexes into this structure dramatically changed the cytotoxicity. The platinum(II) dichloride complex 3 did not demonstrate any activity, while palladium(II) and nickel(II) dichloride complexes 4 and 5 exhibited various cytotoxic behavior towards different types of hormone-receptor positive (HR+) cancer and TNBC cell lines. The replacement of the two chlorido ligands in 3-5 with a dicarbollide (carborate) ion [C2B9H11]2- resulted in reduced activity of compounds 6, 7, and 8. However, the palladacarborane complex 7 demonstrated higher selectivity towards TNBC. Furthermore, the mechanism of action was shifted from cytotoxic to explicitly cytostatic with detectable proliferation arrest and accelerated aging, characterized by senescence-associated phenotype of TNBC cells. This study provides valuable insights into the development of hybrid therapeutics against TNBC.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Níquel , Paládio , Platina , Cloridrato de Raloxifeno , Neoplasias de Mama Triplo Negativas , Humanos , Paládio/química , Paládio/farmacologia , Níquel/química , Níquel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Platina/química , Platina/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Proliferação de Células/efeitos dos fármacos , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Feminino
7.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675623

RESUMO

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Assuntos
Cobre , Iminas , Piridinas , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Dendrímeros/química , Iminas/química , Neoplasias/tratamento farmacológico , Piridinas/química , Bases de Schiff/química
8.
Front Chem ; 12: 1371637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638879

RESUMO

This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][trans-RuIIICl4(dmso)(Isq)] (1) and [H2Ind][trans-RuIIICl4(dmso)(HInd)] (2) (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, cis-[RuCl2(dmso)4] (c) and trans-[RuCl2(dmso)4] (t), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [H2Ind][trans-RuCl4(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands. In the case of the 2-HL adduct, two distinct metalation sites: (i) Arg107, Arg113 and (ii) Gln127, Gln129, were identified. Crystallographic data were supported by studies of the interaction of 1 and 2 with HEWL in an aqueous solution. Hydrolytic stability studies revealed that both complexes 1 and 2 liberate the N-heterocyclic ligand under crystallization-like conditions (pH 4.5) as well as under physiological pH conditions, and this process is not significantly affected by the presence of HEWL. A comparative examination of nine crystal structures of Ru complexes with lysozyme, obtained through soaking and co-crystallization experiments, together with in-solution studies of the interaction between 1 and 2 with HEWL, indicates that the hydrolytic release of the N-heterocyclic ligand is one of the critical factors in the interaction between Ru complexes and lysozyme. This understanding is crucial in shedding light on the tendency of Ru complexes to target diverse metalation sites during the formation and in the final forms of the adducts with proteins.

9.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473872

RESUMO

The targeting of human thioredoxin reductase is widely recognized to be crucially involved in the anticancer properties of several metallodrugs, including Au(I) complexes. In this study, the mechanism of reaction between a set of five N-heterocyclic carbene Au(I) complexes and models of the active Sec residue in human thioredoxin reductase was investigated by means of density functional theory approaches. The study was specifically addressed to the kinetics and thermodynamics of the tiled process by aiming at elucidating and explaining the differential inhibitory potency in this set of analogous Au(I) bis-carbene complexes. While the calculated free energy profile showed a substantially similar reactivity, we found that the binding of these Au(I) bis-carbene at the active CysSec dyad in the TrxR enzyme could be subjected to steric and orientational restraints, underlining both the approach of the bis-carbene scaffold and the attack of the selenol group at the metal center. A new and detailed mechanistic insight to the anticancer activity of these Au(I) organometallic complexes was thus provided by consolidating the TrxR targeting paradigm.


Assuntos
Antineoplásicos , Complexos de Coordenação , Metano/análogos & derivados , Humanos , Selenocisteína , Tiorredoxina Dissulfeto Redutase/metabolismo , Antineoplásicos/farmacologia , Ouro/química , Complexos de Coordenação/química
10.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474631

RESUMO

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Metano/análogos & derivados , Neoplasias Ovarianas , Fosfinas , Feminino , Humanos , Cisplatino/química , Platina/química , Linhagem Celular Tumoral , Cianetos , Espectroscopia de Infravermelho com Transformada de Fourier , Complexos de Coordenação/química , Antineoplásicos/química , Ligantes
11.
Heliyon ; 10(6): e27601, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545219

RESUMO

Despite the increasingly widespread clinical impact of adenovirus (HAdV) infections in healthy individuals and the associated high morbidity in immunosuppressed patients, particularly among the paediatric population, a specific treatment for this virus has yet to be developed. In this study, we report the anti-HAdV activity of sub-micromolar concentrations of four heteroleptic (C^S)-cycloaurated complexes bearing a single thiophosphinamide [Au(dpta)Cl2, Au(dpta)(mrdtc), and Au(dpta)(dedtc)] or thiophosphonamide [Au(bpta)(dedtc)] chelating ligand and a dithiocarbamate moiety. In addition to their low cytotoxicity, the findings of mechanistic assays revealed that these molecules have antiviral activity by targeting stages of the viral replication cycle subsequent to DNA replication. Additionally, all four compounds showed a significant inhibition of human cytomegalovirus (HCMV) DNA replication, thereby providing evidence for potential broad-spectrum antiviral activity.

12.
J Inorg Biochem ; 254: 112520, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460481

RESUMO

The antitumor activity of Ti(IV)-based compounds put them in the spotlight for cancer treatment in the past, but their lack of stability in vivo due to a high rate of hydrolysis has hindered their development as antitumor drugs. As a possible solution for this problem, we have reported a synthesis strategy through which we combined a titanocene fragment, a tridentate ligand, and a long aliphatic chain. This strategy allowed us to generate a titanium compound (Myr-Ti) capable of interacting with albumin, highly stable in water and with cytotoxic activity in tumor cells[1]. Following a similar strategy, now we report the synthesis of a new compound (Myr-TiY) derived from titanocene Y that shows antitumoral activity in a cisplatin resistant model with a 50% inhibitory concentration (IC50) of 41-76 µM. This new compound shows high stability and a strong interaction with human serum albumin. Myr-TiY has a significant antiproliferative and proapoptotic effect on the tested cancer cells and shows potential tumor selectivity when assayed in non-tumor human epithelial cells being more selective (1.3-3.8 times) for tumor cells than cisplatin. These results lead us to think that the described synthesis strategy could be useful to generate compounds for the treatment of both cisplatin-sensitive and cisplatin-resistant cancers.


Assuntos
Antineoplásicos , Neoplasias , Compostos Organometálicos , Humanos , Cisplatino/farmacologia , Platina , Neoplasias/tratamento farmacológico , Albuminas
13.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257258

RESUMO

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Fosfinas , Humanos , Feminino , Cisplatino , Linhagem Celular Tumoral , Ligantes , Paládio , Espectroscopia de Infravermelho com Transformada de Fourier , Cianetos
14.
Biomolecules ; 14(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254704

RESUMO

Interactions between proteins and metal ions and their complexes are important in many areas of the life sciences, including physiology, medicine, and toxicology. Despite the involvement of essential elements in all major processes necessary for sustaining life, metalloproteomes remain ill-defined. This is not only owing to the complexity of metalloproteomes, but also to the non-covalent character of the complexes that most essential metals form, which complicates analysis. Similar issues may also be encountered for some toxic metals. The review discusses recently developed approaches and current challenges for the study of interactions involving entire (sub-)proteomes with such labile metal ions. In the second part, transition metals from the fourth and fifth periods are examined, most of which are xenobiotic and also tend to form more stable and/or inert complexes. A large research area in this respect concerns metallodrug-protein interactions. Particular attention is paid to separation approaches, as these need to be adapted to the reactivity of the metal under consideration.


Assuntos
Proteoma , Íons
15.
Anticancer Agents Med Chem ; 24(7): 488-503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279753

RESUMO

Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Bases de Schiff , Bases de Schiff/química , Bases de Schiff/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Animais
16.
Biomed Pharmacother ; 171: 116211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290253

RESUMO

Research into cancer therapeutics has uncovered various potential medications based on metal-containing scaffolds after the discovery and clinical applications of cisplatin as an anti-cancer agent. This has resulted in many metallodrugs that can be put into medical applications. These metallodrugs have a wider variety of functions and mechanisms of action than pure organic molecules. Although platinum-based medicines are very efficient anti-cancer agents, they are often accompanied by significant side effects and toxicity and are limited by resistance. Some of the most studied and developed alternatives to platinum-based anti-cancer medications include metallodrugs based on ruthenium, gold, copper, iridium, and osmium, which showed effectiveness against many cancer cell lines. These metal-based medicines represent an exciting new category of potential cancer treatments and sparked a renewed interest in the search for effective anti-cancer therapies. Despite the widespread development of metal complexes touted as powerful and promising in vitro anti-cancer therapeutics, only a small percentage of these compounds have shown their worth in vivo models. Metallodrugs, which are more effective and less toxic than platinum-based drugs and can treat drug-resistant cancer cells, are the focus of this review. Here, we highlighted some of the most recently developed Pt, Ru, Au, Cu, Ir, and Os complexes that have shown significant in vivo antitumor properties between 2017 and 2023.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Platina
17.
Chempluschem ; 89(4): e202300557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37937471

RESUMO

A dinuclear gold(I) complex featuring a strongly donating bis-N-heterocyclic imine ligand was synthesised and characterised by different methods, including single crystal X-ray diffraction (SC-XRD) analysis. The compound has been tested for its antiproliferative effects in a panel of human cancer cell lines in vitro, showing highly selective anticancer effects, particularly against human A549 non-small cell lung cancer cells (NSCLC), with respect to non-tumorigenic cells (VERO). The accumulation of the compound in A549 and VERO cells was studied by high-resolution continuum source atomic absorption spectrometry (HRCS-AAS), revealing that the anticancer effects are not particularly related to the different amounts of gold taken up by the cells over 72 h. Enzyme inhibition studies to evaluate the activity of the seleno-enzyme thioredoxin reductase (TrxR) in cancer cell extracts show that the gold(I) compound is a potent inhibitor (IC50=0.567±0.208 µM), while the free ligand is ineffective. This result correlates with the observed compound's selectivity towards A549 cells overexpressing the enzyme.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Chlorocebus aethiops , Humanos , Ouro/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Linhagem Celular Tumoral , Ligantes , Células Vero
18.
Chemistry ; 30(9): e202303568, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38061996

RESUMO

Selected gold complexes have been regarded as promising anti-cancer agents because they can bind with protein targets containing thiol or selenol moieties, but their clinical applications were hindered by the unbiased binding towards off-target thiol-proteins. Recently, a novel gold(III)-hydride complex (abbreviated as 1) with visible light-induced thiol reactivity has been reported as potent photo-activated anticancer agents (Angew. Chem. Int. Ed., 2020, 132, 11139). To explore new strategies to stimuli this potential antitumor drug, the effect of oriented external electric fields (OEEFs) on its geometric structure, electronic properties, and chemical reactivity was systematically investigated. Results reveal that imposing external electric fields along the Au-H bond of 1 can effectively activate this bond, which is conducive to its dissociation and the binding of Au site to potential targets. Hence, this study provides a new OEEF-strategy to activate this reported gold(III)-hydride, revealing its potential application in electrochemical therapy. We anticipate this work could promote the development of more electric field-activated anticancer agents. However, further experimental research should be conducted to verify the conclusions obtained in this work.


Assuntos
Antineoplásicos , Ouro , Ouro/química , Antineoplásicos/química , Eletricidade , Compostos de Sulfidrila
19.
Pharmaceutics ; 15(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38004604

RESUMO

The first-in-class ruthenium-based chemotherapeutic agent BOLD-100 (formerly IT-139, NKP-1339, KP1339) is currently the subject of clinical evaluation for the treatment of gastric, pancreatic, colorectal and bile duct cancer. A radiolabeled version of the compound could present a helpful diagnostic tool. Thus, this study investigated the pharmacokinetics of BOLD-100 in more detail to facilitate the stratification of patients for the therapy. The synthesis of [103Ru]BOLD-100, radiolabeled with carrier added (c.a.) ruthenium-103, was established and the product was characterized by HPLC and UV/Vis spectroscopy. In order to compare the radiolabeled and non-radioactive versions of BOLD-100, both complexes were fully evaluated in vitro and in vivo. The cytotoxicity of the compounds was determined in two colon carcinoma cell lines (HCT116 and CT26) and biodistribution studies were performed in Balb/c mice bearing CT26 allografts over a time period of 72 h post injection (p.i.). We report herein preclinical cytotoxicity and pharmacokinetic data for BOLD-100, which were found to be identical to those of its radiolabeled analog [103Ru]BOLD-100.

20.
J Inorg Biochem ; 249: 112386, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827090

RESUMO

Structure-activity studies aiming to understand the role of each coligand in the formulation of new metallodrugs is an important subject. In that frame, six new compounds with general formula [Fe(η5-C5H5)(dppe)(L)][CF3SO3] with L = benzonitriles (1-4) or carbon monoxide (5) and compound [Fe(η5-C5H5)(CO)(PPh3)2][CF3SO3] (6) were synthesized and compared with three other previously reported compounds [Fe(η5-C5H5)(CO)(L)(PPh3)][CF3SO3]. We were particularly interested in assessing the effect of dppe vs. (PPh3 + CO) for this set of compounds. For that, all compounds were tested against two human colon adenocarcinoma cell lines, Colo205 and the refractile Colo320 (expressing ABCB1, an efflux pump causing multidrug resistance), showing IC50 values in the micromolar range. The presence of dppe in the compound's coordination sphere over (PPh3 + CO) allows for more redox stable compounds showing higher cytotoxicity and selectivity, with improved cytotoxicity towards resistant cells that is not related to the inhibition of ABCB1. Further studies with GSH and H2O2 for selected compounds indicated that their antioxidant ability is not probably the main responsible for their cytotoxicity.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Ferro , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Antineoplásicos/farmacologia , Compostos Ferrosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA