Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pharmacol Res ; 197: 106968, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866705

RESUMO

The potential of marine natural products as effective drugs for osteoporosis treatment is an understudied area. In this study, we investigated the ability of lead compounds from deep-sea-derived Penicillium solitum MCCC 3A00215 to promote bone formation in vitro and in vivo. We found that penicopeptide A (PPA) promoted osteoblast mineralization among bone marrow mesenchymal stem cells (BMSCs) in a concentration-dependent manner, and thus, we selected this natural peptide for further testing. Our further experiments showed that PPA significantly promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation and not affecting their chondrogenic differentiation. Mechanistic studies showed that PPA binds directly to the AKT and GSK-3ß and activates phosphorylation of AKT and GSK-3ß, resulting in the accumulation of ß-catenin. We also evaluated the therapeutic potential of PPA in a female mouse model of ovariectomy-induced systemic bone loss. In this model, PPA treatment prevented decreases in bone volume and trabecular thickness. In conclusion, our in vitro and in vivo results demonstrated that PPA could promote osteoblast-related bone formation via the AKT, GSK-3ß, and ß-catenin signaling pathways, indicating the clinical potential of PPA as a candidate compound for osteoporosis prevention.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Feminino , Animais , Camundongos , Humanos , beta Catenina , Glicogênio Sintase Quinase 3 beta , Osteogênese , Proteínas Proto-Oncogênicas c-akt , Fungos , Osteoblastos , Ovariectomia/efeitos adversos , Transdução de Sinais , Osteoporose/tratamento farmacológico , Osteoporose/etiologia
2.
Skin Res Technol ; 28(6): 804-814, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148627

RESUMO

BACKGROUND: Fatty acids increase ATP-binding cassette ABC transporter A12 (ABCA12) levels via an increase in peroxisome proliferator-activated receptor ß/δ (PPAR ß/δ). Promoting lipid transport to lamellar granules has been suggested to improve epidermal barrier function in patients with dry skin. OBJECTIVE: We investigated whether mevalonolactone (MVL) produced by Saccharomycopsis fibuligera improves dry skin by promoting ABCA12 expression and the amount of free fatty acids in epidermal keratinocytes. METHODS: We examined whether MVL increases ABCA12 mRNA and protein levels and the amount of Nile red-positive lipids in cultured epidermal keratinocytes and in a three-dimensional epidermal model by cell staining. Promotion of fatty acid production by MVL was analyzed by liquid chromatography-mass spectrometry. We also evaluated whether MVL addition increases PPAR ß/δ mRNA expression in cultured keratinocytes. Based on the results, a randomized controlled trial was conducted in which milky lotions containing MVL and placebo were applied to dry facial skin of healthy female volunteers in winter. RESULTS: MVL increased ABCA12 mRNA and protein levels and lamellar granule number and size. Fatty acid analysis revealed that MVL elevated myristic acid, palmitic acid, and palmitoleic acid levels as well as PPAR ß/δ mRNA expression. In human tests, milky lotions containing MVL were shown to significantly improve transepidermal water loss (TEWL) in the stratum corneum compared to placebo. CONCLUSION: The results suggest that MVL increases fatty acid uptake and ABCA12, promotes fatty acid transport to lamellar granules, and improves epidermal barrier function in dry skin through increased expression of PPAR ß/δ.


Assuntos
Epiderme , Ácidos Graxos , Corpos Lamelares , Ácido Mevalônico , PPAR beta , Feminino , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Ácidos Graxos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Corpos Lamelares/efeitos dos fármacos , Corpos Lamelares/metabolismo , Ácido Mevalônico/farmacologia , PPAR beta/metabolismo , RNA Mensageiro/metabolismo , Transporte Biológico/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade
3.
J Pharm Biomed Anal ; 182: 113128, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32004772

RESUMO

Fluvastatin and atorvastatin are inhibitors of hydroxy-methylglutaryl-CoA (HMG-CoA) reductase, the enzyme that converts HMG-CoA to mevalonic acid (MVA). The present study reports for the first time the analysis of mevalonolactone (MVL) in plasma samples by UPLC-MS/MS as well as the use of MVA, analyzed as MVL, as a pharmacodynamics parameter of fluvastatin in multiple oral doses (20, 40 or 80 mg/day for 7 days) and atorvastatin in a single oral dose (20, 40 or 80 mg) in healthy female volunteers. this study presents the use of MVL exposure as a pharmacodynamics biomarker of fluvastatin in multiple oral doses (20, 40 or 80 mg/day for 7 days) or atorvastatin in a single oral dose (20, 40 or 80 mg) in healthy volunteers (n = 30). The administration of multiple doses of fluvastatin (n = 15) does not alter the values (geometric mean and 95 % CI) of AUC0-24 h of MVL [72.00 (57.49-90.18) vs 65.57 (51.73-83.12) ng∙h/mL], but reduces AUC0-6 h [15.33 (11.85-19.83) vs 8.15 (6.18-10.75) ng∙h/mL] by approximately 47 %, whereas single oral dose administration of atorvastatin (n = 15) reduces both AUC0-24 h [75.79 (65.10-88.24) vs 32.88 (27.05-39.96) ng∙h/mL] and AUC0-6 h [17.07 (13.87-21.01) vs 7.01 (5.99-8.22) ng∙h/mL] values by approximately 57 % and 59 %, respectively. In conclusion, the data show that the plasma exposure of MVL represents a reliable pharmacodynamic parameter for PK-PD (pharmacokinetic-pharmacodynamic) studies of fluvastatin in multiple doses and atorvastatin in a single dose.


Assuntos
Atorvastatina/administração & dosagem , Fluvastatina/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Ácido Mevalônico/análogos & derivados , Administração Oral , Adulto , Área Sob a Curva , Atorvastatina/farmacocinética , Atorvastatina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Feminino , Fluvastatina/farmacocinética , Fluvastatina/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ácido Mevalônico/análise , Ácido Mevalônico/sangue , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
Neurochem Int ; 120: 233-237, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29753116

RESUMO

Mevalonate pathway impairment has been observed in diverse diseases, including Mevalonate Kinase Deficiency (MKD). MKD is a hereditary auto-inflammatory disorder, due to mutations at mevalonate kinase gene (MVK), encoding mevalonate kinase (MK) enzyme. To date, the most accredited MKD pathogenic hypothesis suggests that the typical MKD phenotypes might be due to a decreased isoprenoid production rather than to the excess and accumulation of mevalonic acid, as initially supported. Nevertheless, recent studies provide clear evidences that accumulating metabolites might be involved in MKD pathophysiology by exerting a toxic effect. Our work aims at describing the effects of accumulating mevalonolactone, mostly produced by a dehydration reaction due to mevalonic acid accumulation, using an in vitro cellular model mimicking the glial component of the central nervous system (human glioblastoma U-87 MG cells). In order to mimic its progressive increase, occurring during the disease, U-87 MG cells have been treated repeatedly with growing doses of mevalonolactone, followed by the assessment of oxidative stress response (evaluated by measuring SOD2 and HemeOX expression levels), ROS production, mitochondrial damage and inflammatory response (evaluated by measuring IL1B expression levels). Our results suggest that protracted treatments with mevalonolactone induce oxidative stress with augmented ROS production and mitochondrial damage accompanied by membrane depolarization. Furthermore, an increment in IL1B expression has been observed, thus correlating the accumulation of the metabolite with the development of a neuroinflammatory response. Our experimental work suggests to reconsider the presence of a possible synergy between the two major MKD pathogenic hypotheses in attempt of unravelling the different pathogenic pathways responsible for the disease.


Assuntos
Inflamação/tratamento farmacológico , Ácido Mevalônico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Deficiência de Mevalonato Quinase/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/farmacologia , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/efeitos dos fármacos
5.
J Biotechnol ; 259: 46-49, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28842180

RESUMO

Mevalonate (MVA) is a key compound of living organisms including bacteria, plants, and humans. MVA and mevalonolactone (MVL), a lactonized form of MVA, are important for pharmaceutical, cosmeceutical, and biotechnological applications. Although (R, S)-MVA with 50% enantiomeric purity is mainly produced by chemical synthesis, recently, microbial fermentation processes for MVA production have been considered as an alternative to the chemical synthesis because of high enantiomeric purity [(R)-MVA] and high titer. In the present study, bio-MVA produced by a fermentative process was decolorized by a charcoal-based method and then chemically transformed into bio-MVL without byproducts by means of phosphoric acid as an acid catalyst. The final bio-MVL was (R)-MVL with over 99% enantiomeric purity according to 1H NMR analysis.


Assuntos
Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/isolamento & purificação , Ácido Mevalônico/metabolismo , Acetatos , Reatores Biológicos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Ácido Mevalônico/química , Ácidos Fosfóricos , Estereoisomerismo
6.
Neurochem Int ; 108: 133-145, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28284974

RESUMO

Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca2+-loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Deficiência de Mevalonato Quinase/induzido quimicamente , Deficiência de Mevalonato Quinase/metabolismo , Ácido Mevalônico/análogos & derivados , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Mevalônico/toxicidade , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/agonistas , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Wistar
7.
J Pharm Anal ; 5(6): 383-388, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29403953

RESUMO

A stable HMG-CoA reductase (HMGR) reaction in vitro was developed by a sensitive, selective and precise liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The optimized enzyme reaction condition contained 1.5 µg of HMGR, 20 nM of NADPH with 50 min of reaction time. The method was validated by several intra- and inter-day assays. The production transitions of m/z 147.0/59.1 and m/z 154.0/59.1 were used to detect and quantify mevalonolactone (MVAL) and MVAL-D7, respectively. The accuracy and precision of the method were evaluated over the concentration range of 0.005-1.000 µg/mL for MVAL and 0.010-0.500 µg/mL for lovastatin acid in three validation batch runs. The lower limit of quantitation was found to be 0.005 µg/mL for MVAL and 0.010 µg/mL for lovastatin acid. Intra-day and inter-day precision ranged from 0.95% to 2.39% and 2.26% to 3.38% for MVAL, 1.46% to 3.89% and 0.57% to 5.10% for lovastatin acid, respectively. The results showed that the active ingredients in Xuezhikang capsules were 12.2 and 14.5 mg/g, respectively. This assay method could be successfully applied to the quality control study of Xuezhikang capsule for the first time.

8.
Chirality ; 26(9): 453-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24431105

RESUMO

Here we present for the first time the experimental and theoretical (DFT/B3LYP/6-311++G**) Raman optical activity (ROA) spectra of (-)-R-mevalonic acid as the δ-lactone form in neat liquid and in the aqueous solution. Quantum chemical calculations show the conformational diversity of (-)-R-mevalonolactone originated from small energy differences between the various conformation of the six-membered ring and the arrangement of the hydroxyl group. According to calculations, the investigated compound takes predominantly the chair conformation with the hydroxyl group in axial position, but the contribution of the other chair and boat conformers in the equilibrium at room temperature is not negligible. Additionally, we present normal Raman and the surface enhanced Raman (SERS) spectra of (-)-R-mevalonolactone adsorbed on the colloidal silver.


Assuntos
Ácido Mevalônico/análogos & derivados , Análise Espectral Raman/métodos , Ácido Mevalônico/química , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA