RESUMO
Accumulation of pathogenic amyloid-ß disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-ß, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-ß by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-ß with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-ß oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-ß in vitro and in vivo. Furthermore, clearance of amyloid-ß by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.
Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Degeneração Macular/metabolismo , Lisossomos/metabolismo , Autofagia/fisiologia , MamíferosRESUMO
Spinal cord injury (SCI) is a devastating condition that has physical and psychological consequences for patients. SCI is accompanied by scar formation and systemic inflammatory response leading to an intense degree of functional loss. The catechin, epigallocatechin gallate (EGCG), an active compound found in green tea, holds neuroprotective features and is known for its anti-inflammatory potential. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two functionally distinct complexes termed mTOR complex 1 and 2 (mTORC1; mTORC2). Inhibition of mTORC1 by rapamycin causes neuroprotection, leading to partial recovery from SCI. In this study the effects of EGCG, PP242 (an inhibitor of both complexes of mTOR), and a combination of EGCG and PP242 in SCI have been examined. It has been found that both EGCG and PP242 significantly improved sensory/motor functions following SCI. However, EGCG appeared to be more effective (BBB motor test, from 2 to 8 weeks after SCI, p = 0.019, p = 0.007, p = 0.006, p = 0.006, p = 0.05, p = 0.006, and p = 0.003, respectively). The only exception was the Von Frey test, where EGCG was ineffective, while mTOR inhibition by PP242, as well as PP242 in combination with EGCG, significantly reduced withdrawal latency starting from week three (combinatorial therapy (EGCG + PP242) vs. control at 3, 5, and 7 weeks, p = 0.011, p = 0.007, and p = 0.05, respectively). It has been found that EGCG was as effective as PP242 in suppressing mTOR signaling pathways, as evidenced by a reduction in phosphorylated S6 expression (PP242 (t-test, p < 0.0001) or EGCG (t-test, p = 0.0002)). These results demonstrate that EGCG and PP242 effectively suppress mTOR pathways, resulting in recovery from SCI in rats, and that EGCG acts via suppressing mTOR pathways.
RESUMO
The second-generation mammalian target of rapamycin (mTOR) inhibitor PP242 has demonstrated limited success in some rapamycin-insensitive tumours. We examined the therapeutic potential of combining PP242 with adenosine 50- monophosphate-activated protein kinase (AMPK) activator metformin, using a panel of colorectal carcinoma (CRC) cell lines. We found that the PP242 and metformin combination enhanced the suppression of CRC cell proliferation, colony formation, and cancer cell apoptosis induction. The effect of this combination was observed on AMPK phosphorylation. Western blotting showed that PP242 inhibited mTORC1 activation, as indicated by the reduced expression of its major substrate p-S6K1 and the partially reduced phosphorylation of eIF4E-binding protein 1 (4E-BP1). The inhibition of mTORC2-mediated AKT phosphorylation at Ser 473 (AKT Ser473) was transient and occurred in the first few hours of PP242 treatment; metformin exposure decreased the PP242 activity, counteracting AKT activation. We further demonstrated that this was related to direct AMPK-mediated phosphorylation of IRS-1 at Ser789. Thus, the combination of PP242 and metformin completely blocked the activity of both mTORC1 and mTORC2 kinase. This study suggests that this combination could be a more effective strategy for the treatment of CRC.
Assuntos
Neoplasias Colorretais , Metformina , Humanos , Sirolimo/farmacologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Metformina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linhagem Celular TumoralRESUMO
BACKGROUND: Sulforaphane (SFN) is a kind of isothiocyanate from cruciferous vegetables with extensive anti-tumor activity. Esophageal squamous cell carcinoma (ESCC) is a popular malignancy in East Asia, East and South Africa, while the more efficient medicines and therapeutic strategies are still lack. This study aims to explore the anti-tumor activity of SFN alone and combined with Akt/mTOR pathway inhibitors as well as the potential molecular mechanism in ESCC. METHODS AND RESULTS: Cell proliferation, migration, cell cycle phase, apoptosis and protein expression were detected with MTT assay, clone formation experiment, wound healing assays, flow cytometry and Western blot, respectively, after ESCC cells ECa109 and EC9706 treated with SFN alone or combined with Akt/mTOR inhibitors. Xenograft models were used to evaluate the efficiency and mechanism of SFN combined with PP242 in vivo. The results showed that SFN significantly inhibited the viability and induced apoptosis of ECa109 and EC9706 cells by increasing expression of Cleaved-caspase 9. SFN combined with PP242, but not MK2206 and RAD001, synergetic inhibited proliferation of ESCC cells. Moreover, compared to SFN alone, combination of SFN and PP242 had stronger inhibiting efficiency on clone formation, cell migratory, cell cycle phase and growth of xenografts, as well as the more powerful apoptosis-inducing effects on ESCC. The mechanism was that PP242 abrogated the promoting effects of SFN on p-p70S6K (Thr389) and p-Akt (Ser473) in ESCC. CONCLUSIONS: Our findings demonstrate that PP242 enhances the anti-tumor activity of SFN by blocking SFN-induced activation of Akt/mTOR pathway in ESCC, which provides a rationale for treating ESCC using SFN combined with Akt/mTOR pathway inhibitors.
Assuntos
Indóis/farmacologia , Isotiocianatos/farmacologia , Inibidores de MTOR/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Neoplasias Esofágicas , Humanos , Imunofenotipagem , Camundongos , Modelos Biológicos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment.
RESUMO
Stress granules (SGs) are assemblies of mRNA and proteins that form from mRNAs stalled in translation initiation in response to stress. Chronic stress might even induce formation of cytotoxic pathological SGs. SGs participate in various biological functions including response to apoptosis, inflammation, immune modulation, and signalling pathways; moreover, SGs are involved in pathogenesis of neurodegenerative diseases, viral infection, aging, cancers and many other diseases. Emerging evidence has shown that small molecules can affect SG dynamics, including assembly, disassembly, maintenance and clearance. Thus, targeting SGs is a potential therapeutic strategy for the treatment of human diseases and the promotion of health. The established methods for detecting SGs provided ready tools for large-scale screening of agents that alter the dynamics of SGs. Here, we describe the effects of small molecules on SG assembly, disassembly, and their roles in the disease. Moreover, we provide perspective for the possible application of small molecules targeting SGs in the treatment of human diseases.
Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Estresse Fisiológico , Viroses/tratamento farmacológico , Envelhecimento , Animais , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA Mensageiro/genética , Transdução de Sinais , Viroses/genética , Viroses/metabolismo , Viroses/patologiaRESUMO
Dysregulation of mTORC1/mTORC2 pathway is observed in many cancers and mTORC1 inhibitors have been used clinically in many tumor types; however, the mechanism of mTORC2 in tumorigenesis is still obscure. Here, we mainly explored the potential role of mTORC2 in esophageal squamous cell carcinoma (ESCC) and its effects on the sensitivity of cells to mTOR inhibitors. We demonstrated that RICTOR, the key factor of mTORC2, and p-AKT (Ser473) were excessively activated in ESCC and their overexpression is related to lymph node metastasis and the tumor-node-metastasis (TNM) phase of ESCC patients. Furthermore, we found that mTORC1/ mTORC2 inhibitor PP242 exhibited more efficacious anti-proliferative effect on ESCC cells than mTORC1 inhibitor RAD001 due to RAD001-triggered feedback activation of AKT signal. Another, we demonstrated that down-regulating expression of RICTOR in ECa109 and EC9706 cells inhibited proliferation and migration as well as induced cell cycle arrest and apoptosis. Noteworthy, knocking-down stably RICTOR significantly suppresses RAD001-induced feedback activation of AKT/PRAS40 signaling, and enhances inhibition efficacy of PP242 on the phosphorylation of AKT and PRAS40, thus potentiates the antitumor effect of RAD001 and PP242 both in vitro and in vivo. Our findings highlight that selective targeting mTORC2 could be a promising therapeutic strategy for future treatment of ESCC.
RESUMO
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Assuntos
Autofagia , Deleção de Genes , Prolil Oligopeptidases/antagonistas & inibidores , Prolil Oligopeptidases/genética , Proteína Fosfatase 2/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Prolil Oligopeptidases/metabolismoRESUMO
INTRODUCTION: Clinical trials directed at mechanistic target of rapamycin (mTOR) inhibition have yielded disappointing results in glioblastoma (GBM). A major mechanism of resistance involves the activation of a salvage pathway stimulating internal ribosome entry site (IRES)-mediated protein synthesis. PRMT5 activity has been implicated in the enhancement of IRES activity. METHODS: We analyzed the expression and activity of PRMT5 in response to mTOR inhibition in GBM cell lines and short-term patient cultures. To determine whether PRMT5 conferred resistance we used genetic and pharmacological approaches to ablate PRMT5 activity and assessed the effects on in vitro and in vivo sensitivity. Mutational analyses of the requisite IRES-trans-acting factor (ITAF), hnRNP A1 determined whether PRMT5-mediated methylation was necessary for ITAF RNA binding and IRES activity. RESULTS: PRMT5 activity is stimulated in response to mTOR inhibitors. Knockdown or treatment with a PRMT5 inhibitor blocked IRES activity and sensitizes GBM cells. Ectopic expression of non-methylatable hnRNP A1 mutants demonstrated that methylation of either arginine residues 218 or 225 was sufficient to maintain IRES binding and hnRNP A1-dependent cyclin D1 or c-MYC IRES activity, however a double R218K/R225K mutant was unable to do so. The PRMT5 inhibitor EPZ015666 displayed synergistic anti-GBM effects in vitro and in a xenograft mouse model in combination with PP242. CONCLUSIONS: These results demonstrate that PRMT5 activity is stimulated upon mTOR inhibition in GBM. Our data further support a signaling cascade in which PRMT5-mediated methylation of hnRNP A1 promotes IRES RNA binding and activation of IRES-mediated protein synthesis and resultant mTOR inhibitor resistance.
Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Indóis/farmacologia , Sítios Internos de Entrada Ribossomal , Isoquinolinas/farmacologia , Camundongos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Purinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Successful implantation of embryos requires endometrial receptivity. Glucocorticoids are one of the factors influencing the implantation window. In this study, 40 female BALB/c mice were used to study the impacts of dexamethasone administration on endometrial receptivity markers during implantation window. The mice mated and were randomly divided into four groups: control (vehicle), dexamethasone (100 µg/kg, IP), PP242 (30 mg/kg, IP), and dexamethasone + PP242 (Dex + PP242). On the Day 4th and 5th of gestation, mice received their respective treatments and were killed on the 5th day. To assess the expression of Muc1, leukemia inflammatory inhibitor (LIF), serum/glucocorticoid-inducible kinase 1 (SGK1), epithelial Na+ channel (ENaC), miRNA 200a, and miRNA 223-3p in the endometrium real-time polymerase chain reaction was performed. Furthermore, using Western blot analysis protein expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were evaluated. Periodic Acid-Schiff staining was used to examine the histomorphological changes of the uterus. According to the results dexamethasone declined the expression of LIF, whereas upregulated expression of Muc1, SGK1, ENaC mRNA, miRNA 200a, and miRNA 223-3p in the endometrium. In addition, PP242, an mTOR inhibitor, induced mRNA expression of Muc1, miRNA200a, and miRNa223-3p whereas it declined the expression of LIF. Moreover, activity of the ERK1/2-mTOR pathway in the endometrial cells was deterred by dexamethasone and PP242. Nonstop epithelium proliferation and elevated surface glycoproteins layer on epithelium of dexamethasone and/or PP242-received groups were divulged through histochemical analysis. According to the above mentioned results, uterine receptivity during implantation period was declined by dexamethasone, at least in part, through modulation of involved genes in endometrial receptivity and inhibition of the ERK1/2-mTOR pathway.
Assuntos
Proliferação de Células/efeitos dos fármacos , Dexametasona/farmacologia , Implantação do Embrião/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Animais , Implantação do Embrião/genética , Canais Epiteliais de Sódio/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Fator Inibidor de Leucemia/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Mucina-1/genética , Proteínas Serina-Treonina Quinases/genética , Purinas/farmacologiaRESUMO
mTOR (mammalian target of rapamycin) signaling has emerged as a key regulator in a wide range of cellular processes ranging from cell proliferation, immune responses, and electrolyte homeostasis. mTOR consists of 2 distinct protein complexes, mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2) with distinct downstream signaling events. mTORC1 has been implicated in pathological conditions, such as cancer and type 2 diabetes mellitus in humans, and inhibition of this pathway with rapamycin has been shown to attenuate salt-induced hypertension in Dahl salt-sensitive rats. Several studies have found that the mTORC2 pathway is involved in the regulation of renal tubular sodium and potassium transport, but its role in hypertension has remained largely unexplored. In the present study, we, therefore, determined the effect of mTORC2 inhibition with compound PP242 on salt-induced hypertension and renal injury in salt-sensitive rats. We found that PP242 not only completely prevented but also reversed salt-induced hypertension and kidney injury in salt-sensitive rats. PP242 exhibited potent natriuretic actions, and chronic administration tended to produce a negative Na+ balance even during high-salt feeding. The results indicate that mTORC2 and the related downstream associated pathways play an important role in regulation of sodium balance and arterial pressure regulation in salt-sensitive rats. Therapeutic suppression of the mTORC2 pathway represents a novel pathway for the potential treatment of hypertension.
Assuntos
Injúria Renal Aguda/prevenção & controle , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Imunossupressores/farmacologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/toxicidadeRESUMO
We previously reported that PP242 (dual inhibitor of mTORC1/2) plus curcumin induced apoptotic cell death through lysosomal membrane permeabilization (LMP)-mediated autophagy. However, the relationship between ER stress and apoptotic cell death by combined PP242 and curcumin treatment remains unknown. In the present study, we found that combined PP242 and curcumin treatment induced cytosolic Ca2+ release and ER stress. Interestingly, pretreatment with the chemical chaperones (TUDCA and 4-PBA) and knockdown of CHOP and ATF4 by siRNA did not abolish combined treatment-induced apoptosis in renal carcinoma cells. These results suggest that combined treatment with mTORC1/2 inhibitor and curcumin induces ER stress which is not essential for apoptotic cell death. Furthermore, overexpression of HSP70 significantly inhibited PP242 plus curcumin-induced LMP and apoptosis, but the protective effect was abolished by K77R mutation of acetylation site of HSP70. Taken together, our results reveal that regulation of HSP70 through K77 acetylation plays role in combined PP242 and curcumin treatment-induced apoptosis.
Assuntos
Curcumina/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Acetilação , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacosRESUMO
The mammalian Target of Rapamycin (mTOR) is an intracellular serine/threonine kinase that mediates intracellular metabolism, cell survival and actin rearrangement. mTOR is made of two independent complexes, mTORC1 and mTORC2, activated by the scaffold proteins RAPTOR and RICTOR, respectively. The activation of mTORC1 triggers protein synthesis and autophagy inhibition, while mTORC2 activation promotes progression, survival, actin reorganization, and drug resistance through AKT hyper-phosphorylation on Ser473. Due to the mTOR pivotal role in the survival of tumor cells, we evaluated its activation in endothelial cells (ECs) from 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 47 patients with multiple myeloma (MM), and its involvement in angiogenesis. MM-ECs showed a significantly higher expression of mTOR and RICTOR than MGUS-ECs. These data were supported by the higher activation of mTORC2 downstream effectors, suggesting a major role of mTORC2 in the angiogenic switch to MM. Specific inhibition of mTOR activity through siRNA targeting RICTOR and dual mTOR inhibitor PP242 reduced the MM-ECs angiogenic functions, including cell migration, chemotaxis, adhesion, invasion, in vitro angiogenesis on Matrigel®, and cytoskeleton reorganization. In addition, PP242 treatment showed anti-angiogenic effects in vivo in the Chick Chorioallantoic Membrane (CAM) and Matrigel® plug assays. PP242 exhibited a synergistic effect with lenalidomide and bortezomib, suggesting that mTOR inhibition can enhance the anti-angiogenic effect of these drugs. Data to be shown indicate that mTORC2 is involved in MM angiogenesis, and suggest that the dual mTOR inhibitor PP242 may be useful for the anti-angiogenic management of MM patients.
RESUMO
Glioblastoma multiforme (GBM) is the most malignant brain tumor and is associated with poor prognosis due to its thorny localization, lack of efficacious therapies and complex biology. Among the numerous pathways driving GBM biology studied so far, PTEN/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling plays a pivotal role, as it controls cell survival, proliferation and metabolism and is involved in stem cell maintenance. In front of recent and numerous evidences highlighting mTOR upregulation in GBM, all the strategies developed to inhibit this pathway have been substantially unsuccessful. Our study focused on mTOR complex 2 (mTORC2) to understand its involvement in GBM cell growth, proliferation, migration and invasiveness. We utilized an in vitro model, characterized by various genetic alterations (i.e., GL15, U257, U87MG and U118MG cell lines) in order to achieve the clonal heterogeneity observed in vivo. Additionally, being the U87MG cell line endowed with glioblastoma stem cells (GSCs), we also investigated the role of the PTEN/PI3K/AKT/mTOR pathway in this specific cell population, which is responsible for GBM relapse. We provide further insights that explain the reasons for the failure of numerous clinical trials conducted to date targeting PI3K or mTOR complex 1 (mTORC1) with rapamycin and its analogs. Additionally, we show that mTORC2 might represent a potential clinically valuable target for GBM treatment, as proliferation, migration and GSC maintenance appear to be mTORC2-dependent. In this context, we demonstrate that the novel ATP-competitive mTOR inhibitor PP242 effectively targets both mTORC1 and mTORC2 activation and counteracts cell proliferation via the induction of high autophagy levels, besides reducing cell migration, invasiveness and stemness properties.
RESUMO
PP242 is a second generation novel selective ATP-competitive inhibitor of mTOR that displayed promising anti-cancer activity over several cancer types by inhibiting both the complexes of mTOR (mTORC1 and mTORC2). The purpose of this study is to identify the possible metabolites and to evaluate the pharmacokinetic profile of PP242 after a single oral administration to Sprague-Dawley (SD) rats. Two metabolites, including one phase I and one phase II, were identified by in vitro and in vivo studies using rat liver microsomes (RLMs) as well as rat plasma, urine and feces, respectively, through ultra high-performance liquid chromatography-linear ion trap quadrupole-orbitrap-mass spectrometry (UHPLC-LTQ-Orbitrap-MS). The major biotransformation pathways of PP242 were hydroxylation and glucuronide conjugation. Additionally, a simple and rapid quantification method was developed and validated. The method recovery was within 79.7-84.6%, whereas the matrix effect was 78.1-96.0% in all three quality control (QC) concentrations (low, medium and high) including the LLOQ. Other parameters showed acceptable results according to the US food and drug administration (FDA) guidelines for bioanalytical method validation. Afterwards, pharmacokinetic parameters were evaluated in rat plasma by successfully applying the validated method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). After a single oral administration at a dose of 5mg/kg, the maximum plasma concentration (Cmax) of PP242 was 0.17±0.08µg/mL, while the elimination was moderately fast (T1/2: 172.18±45.54min). All of the obtained information on the metabolite identification and pharmacokinetic parameter elucidation could facilitate the further development of PP242.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Indóis/metabolismo , Indóis/farmacocinética , Espectrometria de Massas/métodos , Purinas/metabolismo , Purinas/farmacocinética , Animais , Calibragem , Estabilidade de Medicamentos , Indóis/análise , Indóis/química , Modelos Lineares , Masculino , Microssomos Hepáticos/metabolismo , Purinas/análise , Purinas/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos TestesRESUMO
Tauopathy comprises a group of disorders caused by abnormal aggregates of tau protein. In these disorders phosphorylated tau protein tends to accumulate inside neuronal cells (soma) instead of the normal axonal distribution of tau. A suggested therapeutic strategy for tauopathy is to induce autophagy to increase the ability to get rid of the unwanted tau aggregates. One of the key controllers of autophagy is mTOR. Blocking mTOR leads to stimulation of autophagy. Recently, unravelling molecular structure of mTOR showed that it is formed of two subunits: mTORC1/C2. So, blocking both subunits of mTOR seems more attractive as it will explore all abilities of mTOR molecule. In the present study, we report using pp242 which is a dual mTORC1/C2 blocker in cellular model of tauopathy using LUHMES cell line. Adding fenazaquin to LUHMES cells induced tauopathy in the form of increased phospho tau aggregates. Moreover, fenazaquin treated cells showed the characteristic somatic redistribution of tau. PP242 use in the present tauopathy model reversed the pathology significantly without observable cellular toxicity for the used dosage of 1000 nM. The present study suggests the possible use of pp242 as a dual mTOR blocker to treat tauopathy.
Assuntos
Indóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Purinas/farmacologia , Proteínas tau/metabolismo , Adolescente , Adulto , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Adulto JovemRESUMO
OBJECTIVES: To investigate the anti-leukemia effect and mechanism of mTORC1/2 inhibitor PP242 combined with imatinib (IM) on the proliferation of Ph+ acute lymphoblastic leukemia (ALL) cell line SUP-B15. METHODS: SUP-B15 cell line was treated with PP242, imatinib (IM), or PP242 plus IM for 72 h, IC50 values (the concentration of drug required to kill 50% of the cells) and the combination index (CI ) of synergistic cytotoxicity was determined using MTT methods. The expressions of PI3K/Akt/mTOR and apoptosis associated proteins were examined by Western blot test. RESULTS: The IC50 value of IM alone was (1.50±0.09) µmol/L, however, the IC50 values were (0.81±0.030) µmol/L, (0.36±0.140) µmol/L and (0.02±0.002) µmol/L combined with 20 nmol/L, 30 nmol/L and 50 nmol/L of PP242, and the CI values were 0.764, 0.545 and 0.507, indicating two drugs had highly synergistic effect on anti-proliferation in the SUP-B15 cell line. The expressions of p-Akt, p-4EBP1, p-elF4E, p-cAbl, p-mTOR and p-P70 were down-regulated significantly in a dose-dependent and time-dependent manner after PP242 treatment#.Compared with PP242 or IM alone, the down-regulation of PI3K/Akt/mTOR signaling pathway and the up-regulation of the apoptosis associated proteins (bax and cleaved caspase-3) were more significant in the combination of two drugs. CONCLUSION: The combination of IM and PP242 could increase the inhibition of PI3K/Akt/mTOR signaling pathway and apoptosis mediated by bax and caspase-3 in SUP-B15 cell line.
Assuntos
Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismoRESUMO
AIM: We investigated the effects of TORC1/2 kinase inhibitors on colorectal cancer (CRC) cell lines. MATERIALS & METHODS: Using selective TORC1/2 inhibitors, rapamycin and PP242, we assessed their effect on the growth of CRC cells in vitro and tumor growth in vivo. RESULTS: Rapamycin and PP242 inhibit proliferation and induce apoptosis of CRC cells. They also enhance proapoptotic effect of conventional chemo drug doxorubicin in CRC cells in vitro. When combined with doxorubicin, rapamycin and PP242 almost completely inhibit tumor growth in vivo. Rapamycin and PP242 inhibit phosphorylation of Akt, ribosomal S6 kinase, 4EBP1 and mTOR. CONCLUSION: Our study suggests rapamycin and PP242 may be a useful therapeutic agent and inhibiting mTOR signaling pathway represents a new targeted therapy for CRC.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Humanos , Indóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
mTOR is a critical target for controlling cell cycle progression, senescence and cell death in mammalian cancer cells. Here we studied the role of mTOR-dependent autophagy in implementating the antiprolifrative effect of mTORC1-specific inhibitor rapamycin and ATP-competitive mTOR kinase inhibitor pp242. We carried out a comprehensive analysis of pp242- and rapamycin-induced autophagy in ERas tumor cells. Rapamycin exerts cytostatic effect on ERas tumor cells, thus causing a temporary and reversible cell cycle arrest, activation of non-selective autophagy not accompanied by cell death. The rapamycin-treated cells are able to continue proliferation after drug removal. The ATP-competitive mTORC1/mTORC2 kinase inhibitor pp242 is highly cytotoxic by suppressing the function of mTORC1-4EBP1 axis and mTORC1-dependent phosphorylation of mTORC1 target--ULK1-Ser757 (Atg1). In contrast to rapamycin, pp242 activates the selective autophagy targeting mitochondria (mitophagy). The pp242-induced mitophagy is accompanied by accumulation of LC3 and conversion of LC3-I form to LC3-II. However reduced degradation of p62/SQSTM indicates abnormal flux of autophagic process. According to transmission electron microscopy data, short-term pp242-treated ERas cells exhibit numerous heavily damaged mitochondria, which are included in single membrane-bound autophagic/autolysophagic vacuoles (mitophagy). Despite the lack of typical for apoptosis features, ERas-treated cells with induced mitophagy revealed the activation of caspase 3, 9 and nucleosomal DNA fragmentation. Thus, pp242 activates autophagy with suppressed later stages, leading to impaired recycling and accumulation of dysfunctional mitochondria and cell death. Better understanding of how autophagy determines the fate of a cell--survival or cell death, can help to development of new strategy for cancer therapy.
Assuntos
Proteínas E1A de Adenovirus/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Purinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas E1A de Adenovirus/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/ultraestrutura , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Proto-Oncogênicas p21(ras)/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , TransfecçãoRESUMO
Internal ribosome entry sites (IRESs) in cellular mRNAs direct expression of growth-promoting factors through an alternative translation mechanism that has yet to be fully defined. Lymphoid enhancer factor-1 (LEF-1), a Wnt-mediating transcription factor important for cell survival and metastasis in cancer, is produced via IRES-directed translation, and its mRNA is frequently upregulated in malignancies, including chronic myeloid leukaemia (CML). In this study, we determined that LEF1 expression is regulated by Bcr-Abl, the oncogenic protein that drives haematopoietic cell transformation to CML. We have previously shown that the LEF1 5' untranslated region recruits a complex of proteins to its IRES, including the translation initiation factor eIF4A. In this report, we use two small molecule inhibitors, PP242 (dual mTOR (mammalian target of rapamycin) kinase inhibitor) and hippuristanol (eIF4A inhibitor), to define IRES regulation via a Bcr-Abl-mTOR-eIF4A axis in CML cell lines and primary patient leukaemias. We found that LEF1 and other IRESs are uniquely sensitive to the activities of Bcr-Abl/mTOR. Most notably, we discovered that eIF4A, an RNA helicase, elicits potent non-canonical effects on the LEF1 IRES. Hippuristanol inhibition of eIF4A stalls translation of IRES mRNA and triggers dissociation from polyribosomes. We propose that a combination drug strategy which targets mTOR and IRES-driven translation disrupts key factors that contribute to growth and proliferation in CML.