Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 155: 3-9, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30419334

RESUMO

The function and fate of cellular RNAs are often governed by the phosphorylation state at the 5' end or the identity of whatever cap may be present there. Here we describe methods for examining these important 5'-terminal features on any cellular or synthetic RNA of interest that can be detected by Northern blotting. One such method, PABLO, is a splinted ligation assay that makes it possible to accurately quantify the percentage of 5' ends that are monophosphorylated. Another, PACO, is a capping assay that reveals the percentage of 5' ends that are diphosphorylated. A third, boronate gel electrophoresis in conjunction with deoxyribozyme-mediated cleavage, enables different types of caps (e.g., m7Gppp caps versus NAD caps) to be distinguished from one another and the percentage of each to be determined. After completing all three tests, the percentage of 5' ends that are triphosphorylated can be deduced by process of elimination. Together, this battery of assays allows the 5' terminus of an RNA to be profiled in unprecedented detail.


Assuntos
Região 5'-Flanqueadora , Eletroforese em Gel de Poliacrilamida/métodos , Capuzes de RNA/análise , Edição de RNA , RNA Mensageiro/química , Northern Blotting/métodos , Ácidos Borônicos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfatos/metabolismo , Fosforilação , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
RNA Biol ; 15(6): 703-706, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619898

RESUMO

Deprotection of the 5' end appears to be a universal mechanism for triggering the degradation of mRNA in bacteria and eukaryotes. In Escherichia coli, for example, converting the 5' triphosphate of primary transcripts to a monophosphate accelerates cleavage at internal sites by the endonuclease RNase E. Previous studies have shown that the RNA pyrophosphohydrolase RppH catalyzes this transformation in vitro and generates monophosphorylated decay intermediates in vivo. Recently, we reported that purified E. coli RppH unexpectedly reacts faster with diphosphorylated than with triphosphorylated substrates. By using a novel assay, it was also determined that diphosphorylated mRNA decay intermediates are abundant in wild-type E. coli and that their fractional level increases to almost 100% for representative mRNAs in mutant cells lacking RppH. These findings indicate that the conversion of triphosphorylated to monophosphorylated RNA in E. coli is a stepwise process involving sequential phosphate removal and the transient formation of a diphosphorylated intermediate. The latter RNA phosphorylation state, which was previously unknown in bacteria, now appears to define the preferred biological substrates of E. coli RppH. The enzyme responsible for generating it remains to be identified.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Estabilidade de RNA/fisiologia , RNA Bacteriano/metabolismo , Hidrolases Anidrido Ácido/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosforilação/fisiologia , RNA Bacteriano/genética
3.
Mol Cell ; 67(1): 44-54.e6, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28673541

RESUMO

RNA modifications that once escaped detection are now thought to be pivotal for governing RNA lifetimes in both prokaryotes and eukaryotes. For example, converting the 5'-terminal triphosphate of bacterial transcripts to a monophosphate triggers 5' end-dependent degradation by RNase E. However, the existence of diphosphorylated RNA in bacteria has never been reported, and no biological role for such a modification has ever been proposed. By using a novel assay, we show here for representative Escherichia coli mRNAs that ~35%-50% of each transcript is diphosphorylated. The remainder is primarily monophosphorylated, with surprisingly little triphosphorylated RNA evident. Furthermore, diphosphorylated RNA is the preferred substrate of the RNA pyrophosphohydrolase RppH, whose biological function was previously assumed to be pyrophosphate removal from triphosphorylated transcripts. We conclude that triphosphate-to-monophosphate conversion to induce 5' end-dependent RNA degradation is a two-step process in E. coli involving γ-phosphate removal by an unidentified enzyme to enable subsequent ß-phosphate removal by RppH.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Hidrolases Anidrido Ácido/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosforilação , RNA Bacteriano/genética , RNA Mensageiro/genética , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA