Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 49(4): 585-597, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222964

RESUMO

Hypoxia is a common phenomenon in aquaculture. With the dissolved oxygen (DO) 3.75 ± 0.25 mg O2 /L for hypoxia group and 7.25 ± 0.25 mg O2 /L for control group for 30, 60, and 90 days, long-term hypoxia stress was used to investigate the oxidative stress, apoptosis, and immunity in the intestine of Pelteobagrus vachelli. According to the results of measurement of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) activities and malondialdehyde (MDA) content, the oxidative stress ability of the intestine was activated at 30 days and impaired at 60 and 90 days. The upregulation of Bcl-2-associated x (Bax); downregulation of B cell lymphoma-2 (Bcl-2); increased activities of caspase-3, caspase-9, and Na+-K+-ATPase; decreased activities of succinate dehydrogenase (SDH); and the release of cytochrome c (Cyt-c) in mitochondria revealed that hypoxia induced the apoptosis. Moreover, heat shock protein 70 (HSP 70), heat shock protein 90 (HSP 90), immunoglobulin M (IgM), and C-lysozyme (C-LZM) were activated to inhibit apoptosis, but the immunoregulatory function might be damaged at 60 and 90 days. This study provides a theoretical foundation for understanding the mechanisms of hypoxia stress and aquaculture management of P. vachelli.


Assuntos
Antioxidantes , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Apoptose , Hipóxia/metabolismo , Superóxido Dismutase/metabolismo , Oxigênio , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Intestinos , Imunidade
2.
Aquat Toxicol ; 258: 106498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001201

RESUMO

Blood redistribution occurs in mammals under hypoxia but has not been reported in fish. This study investigated the tissue damage, hypoxia-inducible factor (HIF) activation level, and blood flow changes in the brain, liver, and muscle of Pelteobagrus vachelli during the hypoxia process for normoxia-hypoxia-asphyxia. The results showed that P. vachelli has tissue specificity in response to hypoxic stress. Cerebral blood flow increased with less damage than in the liver and muscle, suggesting that P. vachelli may also have a blood redistribution mechanism in response to hypoxia. It is worth noting that severe hypoxia can lead to a sudden increase in the degree of brain tissue damage. In addition, higher dissolved oxygen levels activate HIF and may have contributed to the reduced damage observed in the brain. This study provides basic data for investigating hypoxic stress in fish.


Assuntos
Estruturas Animais , Peixes-Gato , Hipóxia , Fluxo Sanguíneo Regional , Peixes-Gato/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Músculos/química , Músculos/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Estruturas Animais/irrigação sanguínea , Estruturas Animais/patologia , Hipóxia/fisiopatologia , Estresse Fisiológico/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Genes Mitocondriais/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Animais
3.
Ecotoxicol Environ Saf ; 254: 114749, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907096

RESUMO

Hypoxia in water environment has become increasingly frequent and serious due to global warming and environmental pollution. Revealing the molecular mechanism of fish hypoxia adaptation will help to develop markers of environmental pollution caused by hypoxia. Here, we used a multi-omics method to identify the hypoxia-associated mRNA, miRNA, protein, and metabolite involved in various biological processes in Pelteobagrus vachelli brain. The results showed that hypoxia stress caused brain dysfunction by inhibiting energy metabolism. Specifically, the biological processes involved in energy synthesis and energy consumption are inhibited in P. vachelli brain under hypoxia, such as oxidative phosphorylation, carbohydrate metabolism and protein metabolism. Brain dysfunction is mainly manifested as blood-brain barrier injury accompanied by neurodegenerative diseases and autoimmune diseases. In addition, compared with previous studies, we found that P. vachelli has tissue specificity in response to hypoxia stress and the muscle suffers more damage than the brain. This is the first report to the integrated analysis of the transcriptome, miRNAome, proteome, and metabolome in fish brain. Our findings could provide insights into the molecular mechanisms of hypoxia, and the approach could also be applied to other fish species. DATA AVAILABILITY: The raw data of transcriptome has been uploaded to NCBI database (ID: SUB7714154 and SUB7765255). The raw data of proteome has been uploaded to ProteomeXchange database (PXD020425). The raw data of metabolome has been uploaded to Metabolight (ID: MTBLS1888).


Assuntos
Peixes-Gato , Proteoma , Animais , Proteoma/genética , Proteoma/metabolismo , Multiômica , Hipóxia/genética , Peixes-Gato/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Transcriptoma
4.
Front Genet ; 13: 1050192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452160

RESUMO

Pelteobagrus vachelli is a freshwater fish with high economic value, but the lack of genome resources has severely restricted its industrial development and population conservation. Here, we constructed the first chromosome-level genome assembly of P. vachelli with a total length of approximately 662.13 Mb and a contig N50 was 14.02 Mb, and scaffolds covering 99.79% of the assembly were anchored to 26 chromosomes. Combining the comparative genome results and transcriptome data under environmental stress (high temperature, hypoxia and Edwardsiella. ictaluri infection), the MAPK signaling pathway, PI3K-Akt signaling pathway and apelin signaling pathway play an important role in environmental adaptation of P. vachelli, and these pathways were interconnected by the ErbB family and involved in cell proliferation, differentiation and apoptosis. Population evolution analysis showed that artificial interventions have affected wild populations of P. vachelli. This study provides a useful genomic information for the genetic breeding of P. vachelli, as well as references for further studies on fish biology and evolution.

5.
Mol Cell Proteomics ; 21(3): 100196, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031490

RESUMO

Increasing pressures on aquatic ecosystems because of pollutants, nutrient enrichment, and global warming have severely depleted oxygen concentrations. This sudden and significant lack of oxygen has resulted in persistent increases in fish mortality rates. Revealing the molecular mechanism of fish hypoxia adaptation will help researchers to find markers for hypoxia induced by environmental stress. Here, we used a multiomics approach to identify several hypoxia-associated miRNAs, mRNAs, proteins, and metabolites involved in diverse biological pathways in the muscles of Pelteobagrus vachelli. Our findings revealed significant hypoxia-associated changes in muscles over 4 h of hypoxia exposure and discrete tissue-specific patterns. We have previously reported that P. vachelli livers exhibit increased anaerobic glycolysis, heme synthesis, erythropoiesis, and inhibit apoptosis when exposed to hypoxia for 4 h. However, the opposite was observed in muscles. According to our comprehensive analysis, fishes show an acute response to hypoxia, including activation of catabolic pathways to generate more energy, reduction of biosynthesis to decrease energy consumption, and shifting from aerobic to anaerobic metabolic contributions. Also, we found that hypoxia induced muscle dysfunction by impairing mitochondrial function, activating inflammasomes, and apoptosis. The hypoxia-induced mitochondrial dysfunction enhanced oxidative stress, apoptosis, and further triggered interleukin-1ß production via inflammasome activation. In turn, interleukin-1ß further impaired mitochondrial function or apoptosis by suppressing downstream mitochondrial biosynthesis-related proteins, thus resulting in a vicious cycle of inflammasome activation and mitochondrial dysfunction. Our findings contribute meaningful insights into the molecular mechanisms of hypoxia, and the methods and study design can be utilized across different fish species.


Assuntos
Peixes-Gato , Ecossistema , Animais , Peixes-Gato/metabolismo , Hipóxia/metabolismo , Músculos/metabolismo , Oxigênio/metabolismo
6.
J Proteomics ; 251: 104425, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785373

RESUMO

Dissolved oxygen is one of the determinants in the healthy farming of Pelteobagrus vachelli. This study, we conducted quantitative proteomics on the juvenile P. vachelli livers using iTRAQ. P. vachelli were treated by 3.75 ± 0.25 mg O2/L (hypoxia group) and 7.25 ± 0.25 mg O2/L (control group) for 90 days. The results revealed that under hypoxic conditions, P. vachelli grew slower than control group. Proteomic profiling enabled us to identify 2618 proteins, of which 176 were significantly differentially abundant proteins (DAPs). Verification of protein regulation based on qRT-PCR indicated that the proteomics data were reliable. The top 20 significantly DAPs (10 up-regulated, 10 down-regulated) were primarily involved in energy metabolism, apoptosis inhibition, and heavy metal detoxification. KEGG pathway enrichment analysis revealed significant enrichment of 'protein digestion and absorption', 'glycolysis/gluconeogenesis', and 'phagosome'. Combining the proteomics results of short-term hypoxia (treated with 0.70 ± 0.10 mg O2 /L for 4 h), we screened 36 common DAPs. The analysis of the 36 common DAPs indicated that P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis, and disturbing defensive system. Our results lay a theoretical foundation for the cultivation of hypoxia-tolerant species and eco-breeding of P. vachelli. SIGNIFICANCE OF THE STUDY: The hypoxia tolerance of Pelteobagrus vachelli is poor, which will seriously lead to its death in high-density culture. This study analysed the liver proteome of P. vachelli under long-term hypoxia stress (treated for 90 days at 3.75 ± 0.25 mg O2/L), and then combined the proteome results of short-term hypoxia stress (treated for 4 h at 0.70 ± 0.10 mg O2/L). The results showed P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis and disturbing defensive system. The study contributes to the breeding of new hypoxia-tolerant species of P. vachelli and lays the theoretical foundation for eco-breeding.


Assuntos
Peixes-Gato , Proteômica , Animais , Hipóxia/metabolismo , Fígado/metabolismo , Proteoma/metabolismo , Proteômica/métodos
7.
Fish Physiol Biochem ; 47(5): 1429-1448, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34313912

RESUMO

The regulation mechanism of the hybrid yellow catfish "Huangyou-1" was assessed under conditions of hypoxia and reoxygenation by examination of oxygen sensors and by monitoring respiratory metabolism, oxidative stress, and apoptosis. The expressions of genes related to oxygen sensors (HIF-1α, HIF-2α, VHL, HIF-1ß, PHD2, and FIH-1) were upregulated in the brain and liver during hypoxia, and recovered compared with control upon reoxygenation. The expressions of genes related to glycolysis (HK1, PGK1, PGAM2, PFK, and LDH) were increased during hypoxia and then recovered compared with control upon reoxygenation. The mRNA levels of CS did not change during hypoxia in the brain and liver, but increased during reoxygenation. The mRNA levels of SDH decreased significantly only in the liver during hypoxia, but later increased compared with control upon reoxygenation in both tissues. Under hypoxic conditions, the expressions of genes related to oxidative stress (SOD1, SOD2, GSH-Px, and CAT) and the activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and MDA were upregulated compared with control. The expressions of genes related to apoptosis (Apaf-1, Bax, Caspase 3, Caspase 9, and p53) were higher than those in control during hypoxic exposure, while the expressions of Bcl-2 and Cyt C were decreased. The findings of the transcriptional analyses will provide insights into the molecular mechanisms of hybrid yellow catfish "Huangyou-1" under conditions of hypoxia and reoxygenation. Overall, these findings showed that oxygen sensors of "Huangyou-1" are potentially useful biomarkers of environmental hypoxic exposure. Together with genes related to respiratory metabolism, oxidative stress and apoptosis occupy a quite high position in enhancing hypoxia tolerance. Our findings provided new insights into the molecular regulatory mechanism of hypoxia in "Huangyou-1."


Assuntos
Peixes-Gato , Animais , Apoptose , Peixes-Gato/genética , Peixes-Gato/metabolismo , Hipóxia/veterinária , Estresse Oxidativo , Oxigênio , RNA Mensageiro/metabolismo
8.
Gene ; 704: 1-7, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30970275

RESUMO

Mitochondrial homoplasmy is essential for normal development, as its heteroplasmy usually leads to abnormal or diseased phenotypes in mammals. So far, diverse mechanisms have been proposed to play roles in ensuring uniparental inheritance of mitochondria in many organisms. In recent years, hybrid yellow catfish from mating female yellow catfish (Pelteobagrus fulvidraco) with male darkbarbel catfish (Pelteobagrus vachelli) has been widely cultured in China due to its fast-growing. However, a high rate of abnormal and defective embryos was observed in the offsprings of hybrid yellow catfish. In this study, we systematically investigated the elimination process of paternal mitochondrial DNA (mtDNA) in yellow catfish and hybrid yellow catfish. The mtDNA contents significantly decreased in the isolated mature sperm compared with the semen. Different from the elimination of paternal mtDNA after fertilization in yellow catfish, paternal mtDNA was retained in the developmental embryos of hybrid yellow catfish as later as gastrula stage, indicating a delay of elimination for paternal mtDNA and mitochondrial heteroplasmy during embryogenesis in hybrid yellow catfish. Altogether, the present study suggests that mitochondrial heteroplasmy may affect embryonic development of hybrid progeny between catfish species.


Assuntos
Peixes-Gato/genética , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário/genética , Hibridização Genética , Herança Paterna/genética , Animais , Peixes-Gato/classificação , Anormalidades Congênitas/genética , Anormalidades Congênitas/veterinária , Feminino , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Desnaturação de Ácido Nucleico
9.
Mitochondrial DNA B Resour ; 4(2): 3398-3399, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33366011

RESUMO

The complete mitochondrial genome sequence of a hybrid, which was produced by sexual hybridization of Pelteobagrus vachelli (♀) × Pelteobagrus fulvidraco (♂), was obtained. The complete mitochondrial genome of the hybrid is 16,532 bp, containing 37 genes. 129 Site differences were found in overall length compared with P. vachelli.

10.
Proteomics ; 17(17-18)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28771929

RESUMO

More and more frequently these days, aquatic ecosystems are being stressed by nutrient enrichment, pollutants, and global warming, leading to a serious depletion in oxygen concentrations. Although a sudden, significant lack of oxygen will result in mortality, fishes can have an acute behavior (e.g., an increase in breathing rate, reduction in swimming frequency) and physiology responses (e.g., increase in oxygen delivery, and reduction in oxygen consumption) to hypoxia, which allows them to maintain normal physical activity. Therefore, in order to shed further light on the molecular mechanisms of hypoxia adaptation in fishes, the authors conduct comparative quantitative proteomics on Pelteobagrus vachelli livers using iTRAQ. The research identifies 511 acute hypoxia-responsive proteins in P. vachelli. Furthermore, comparison of several of the diverse key pathways studied (e.g., peroxisome pathway, PPAR signaling pathway, lipid metabolism, glycolysis/gluco-neogenesis, and amino acid metabolism) help to articulate the different mechanisms involved in the hypoxia response of P. vachelli. Data from proteome analysis shows that P. vachelli can have an acute reaction to hypoxia, including detoxification of metabolic by-products and oxidative stress in light of continued metabolic activity (e.g., peroxisomes), an activation in the capacity of catabolism to get more energy (e.g., lipolysis and amino acid catabolism), a depression in the capacity of biosynthesis to reduce energy consumption (e.g., biosynthesis of amino acids and lipids), and a shift in the aerobic and anaerobic contributions to total metabolism. The observed hypoxia-related changes in the liver proteome of the fish can help to understand or can be related to the hypoxia-related response that takes place in similar conditions in the liver or other proteomes of mammals.


Assuntos
Doenças dos Peixes/fisiopatologia , Proteínas de Peixes/metabolismo , Hipóxia/veterinária , Marcação por Isótopo/métodos , Fígado/metabolismo , Oxigênio/metabolismo , Proteômica/métodos , Adaptação Fisiológica , Animais , Peixes , Hipóxia/fisiopatologia , Consumo de Oxigênio , Transdução de Sinais , Espectrometria de Massas em Tandem
11.
J Comp Physiol B ; 187(7): 931-943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28353178

RESUMO

Oxygen is a vital element in aquatic environments. The concentration of oxygen to which aquatic organisms are exposed is influenced by salinity, water temperature, weather, and surface water runoff. Hypoxia has a serious effect on fish populations, and can lead to the loss of habitat and die-offs. Therefore, in the present study we used next-generation sequencing technology to characterize the transcriptomes of Pelteobagrus vachelli and identified 70 candidate genes in the HIF-1 signaling pathway that are important for the hypoxic response in all metazoan species. For the first time, the present study reported the effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices in P. vachelli. The predicted physiological adjustments show that P. vachelli's blood oxygen-carrying capacity was increased through increased RBC, HB, and SI after hypoxia exposure. Glycolysis-related enzyme activities (PFK, HK, and PK) and LDH in the brain and liver also increased, indicating a rise in anaerobic metabolism. The observed reduction in oxidative enzyme level (CS) in the liver during hypoxia suggests a concomitant depression in aerobic metabolism. There were significant increases in oxygen sensor mRNA expression and HIF-1α protein expression during hypoxia and reoxygenation exposure, suggesting that the HIF-1 signaling pathway was activated in the liver and brain of P. vachelli in response to acute hypoxia and reoxygenation. Our findings suggest that oxygen sensors (e.g., HIF-1α) of P. vachelli are potentially useful biomarkers of environmental hypoxic exposure. These data contribute to a better understanding of the molecular mechanisms of the hypoxia signaling pathway in fish under hypoxia and reoxygenation.


Assuntos
Peixes-Gato/metabolismo , Metabolismo Energético , Proteínas de Peixes/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Adaptação Fisiológica , Animais , Encéfalo/metabolismo , Peixes-Gato/sangue , Peixes-Gato/genética , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Hipóxia/sangue , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/metabolismo , Oxigênio/sangue , RNA Mensageiro/genética , Fatores de Tempo
12.
Chemosphere ; 151: 271-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26945243

RESUMO

Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by fish with aquatic respiration. In order to evaluate the effects of hypoxia and reoxygenation on oxidative stress in fish, the mRNA and protein expression of SODs (Cu/Zn-SOD and Mn-SOD) as well as indices (CP, LPO and MDA) and enzymatic activities (SOD, CAT, GPx, GR and GST) were analyzed in liver and brain tissues of Pelteobagrus vachelli. Predominant expression of PvSOD2 was detected in heart, brain, and liver. In contrast, PvSOD1 was highly expressed in liver. Based on the expression patterns of above parameters, we inferred that brain tissue of P. vachelli under 0.7 mg/L degree of acute hypoxia condition could experience hypometabolic states or no suffering stress, but brain tissue has effective mechanisms to minimize or prevent oxidative stress during the transition from hypoxia to reoxygenation. Our results also demonstrated an increased expression of SODs and enzymatic activities for oxidative stress in liver under hypoxic conditions, which supports the hypothesis that anticipatory preparation takes place in order to deal with the encountered oxidative stress during the recovery from hypoxia as proposed by M. Hermes-Lima. Therefore, this study will provide a clue to better understand the action mode of antioxidant genes and enzymes under oxidative stress in fish.


Assuntos
Peixes-Gato/metabolismo , Expressão Gênica , Hipóxia/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Peixes-Gato/genética , Expressão Gênica/efeitos dos fármacos , Hipóxia/genética , Fígado/metabolismo , Miocárdio/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 4191-4192, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-25648919

RESUMO

In the present of study, we have reported the complete mitochondrial DNA sequence of the hybrid of Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂) that is obtained by artificial hybridization. The total length of the mitochondrial genome is 16,527 bp, with the base compositions of 30.84% A, 25.54% T, 28.22% C, and 15.40% G. It contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes, and a major non-coding control region (D-loop region). The arrangement of these genes is same as that observed in the teleosts. All protein initiation codons are ATG, except for COX1 that begins with GTG. The complete mitogenome of the hybrid of P. fulvidraco (♀) × P. vachelli (♂) provides an important data set for the exploration of mitochondrial inheritance mechanism. The termination-associated sequence and critical central conserved sequences (CSB-D, CSB-E and CSB-F) are also detected.


Assuntos
Peixes-Gato/genética , Quimera/genética , Proteínas de Peixes/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , RNA Ribossômico/genética , RNA de Transferência/genética , RNA/genética , Animais , RNA Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA