Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
ACS Appl Mater Interfaces ; 16(37): 49778-49789, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39250596

RESUMO

The abundance of uranium (U(VI)) reserves in seawater makes it crucial to develop economically efficient methods for uranium extraction from seawater. In this work, an enhanced polyamidoxime porous membrane (PAOM) was fabricated by pre-in situ amidoxime modification combined with nonsolvent-induced phase separation (NIPS). The strategy of in situ modification of the polyacrylonitrile (PAN) solution served to enhance the homogeneity of the reaction and avoid the destruction of the membrane matrix and pore structure. Compared with the control sample (AOPM), PAOM possessed better mechanical strength and hydrophilicity. The introduction of polyvinylpyrrolidone (PVP) formed a porous structure in PAOM, improving spatial accessibility and facilitating the diffusion transport and capture of UO22+ inside the membrane. The more uniform and abundant distribution of amidoxime groups in PAOM gave it ultrahigh adsorption capacity and selectivity. The equilibrium adsorption capacity and Kd value of PAOM were 1.72 and 5.51 times higher than those of AOPM. Meanwhile, PAOM also demonstrated good recyclability, with only a 6.15% decrease in adsorption capacity after seven cycles. Additionally, PAOM exhibited excellent dynamic adsorption performance, and after 14 days of continuous filtration and adsorption, PAOM could extract 2.03 mg·g-1 U(VI) from natural seawater.

2.
Adv Mater ; 36(36): e2309572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096076

RESUMO

The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.

3.
Membranes (Basel) ; 14(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195423

RESUMO

A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, where a porous membrane replaces the conic or cylindrical wall. During the operation of this equipment, in addition to the traditionally observed streams (feed, underflow, and overflow), there is a liquid stream resulting from the filtration process, commonly referred to as filtrate. This work proposes to numerically investigate the solid particle/liquid water separation process in a filtering hydrocyclone using the commercial software Ansys CFX® 15.0. The proposed mathematical model for the study considers three-dimensional, steady state and turbulent flow, using the Eulerian-Eulerian approach and the Shear Stress Transport (SST) turbulence model. This study presents and analyzes the volume fraction, velocity, and pressure fields, along with flowlines and velocity profiles. The results indicate that the proposed model effectively captures the fluid dynamic behavior within the filtering hydrocyclone, highlighting higher pressures near the porous membrane and a higher concentration of solid particles in the conical region, with water being more concentrated in the cylindrical part of the hydrocyclone. Additionally, the findings show that the volumetric flow rate of the filtrate significantly influences the internal flow dynamics, with conventional hydrocyclones demonstrating higher pressure gradients compared to the proposed filtering hydrocyclone.

4.
ACS Nano ; 18(33): 21633-21650, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39114876

RESUMO

Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.

5.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000701

RESUMO

Porous membrane technology has garnered significant attention in the fields of separation and biology due to its remarkable contributions to green chemistry and sustainable development. The porous membranes fabricated from polylactic acid (PLA) possess numerous advantages, including a low relative density, a high specific surface area, biodegradability, and excellent biocompatibility. As a result, they exhibit promising prospects for various applications, such as oil-water separation, tissue engineering, and drug release. This paper provides an overview of recent research advancements in the fabrication of PLA membranes using electrospinning, the breath-figure method, and the phase separation method. Firstly, the principles of each method are elucidated from the perspective of pore formation. The correlation between the relevant parameters and pore structure is discussed and summarized, subsequently followed by a comparative analysis of the advantages and limitations of each method. Subsequently, this article presents the diverse applications of porous PLA membranes in tissue engineering, oil-water separation, and other fields. The current challenges faced by these membranes, however, encompass inadequate mechanical strength, limited production efficiency, and the complexity of pore structure control. Suggestions for enhancement, as well as future prospects, are provided accordingly.

6.
ACS Sens ; 9(8): 4248-4255, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39079053

RESUMO

Microphysiological systems have attracted attention because of their use in drug screening. However, it is challenging to measure cell functions in real time using a device. In this study, we developed a cell culture device using a porous membrane electrode for in situ electrochemical glucose measurements for cell analysis. First, a porous membrane electrode was fabricated and electrochemically evaluated for enzyme-free glucose measurement. Subsequently, the glucose uptake of MCF-7 spheroids was evaluated using living spheroids, fixed spheroids, supernatants, and glucose transporter inhibitor-treated spheroids. Conventionally, the direct optical measurement of glucose uptake requires fluorescence-labeled glucose derivatives. In addition, the glucose uptake can be evaluated by measuring the glucose concentration in the medium by optical or electrochemical measurements. However, glucose needs to be consumed in the entire cell culture medium, which needs a long culture time. In contrast, our system can measure glucose in approximately 5 min without any labels because of in situ electrochemical measurements. This system can be used for in situ measurements in in vitro cell culture systems, including organ-on-a-chip for drug screening.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Glucose , Esferoides Celulares , Humanos , Glucose/metabolismo , Glucose/análise , Esferoides Celulares/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Porosidade , Células MCF-7 , Transporte Biológico
7.
ACS Appl Mater Interfaces ; 16(31): 40767-40786, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047263

RESUMO

A modular and 3D compartmentalized microfluidic system with electrospun porous membranes (PMs) for epithelialized organ-on-a-chip systems is presented. Our novel approach involves direct deposition of polymer nanofibers onto a patterned poly(methyl methacrylate) (PMMA) substrate using electrospinning, resulting in an integrated PM within the microfluidic chip. The in situ deposition of the PM eliminates the need for additional assembly processes. To demonstrate the high throughput membrane integration capability of our approach, we successfully deposited nanofibers onto various chip designs with complex microfluidic planar structures and expanded dimensions. We characterized and tested the fully PMMA chip by growing an epithelial monolayer using the Caco-2 cell line to study drug permeability. A comprehensive analysis of the bulk and surface properties of the membrane's fibers made of PMMA and polystyrene (PS) was conducted to determine the polymer with the best performance for cell culture and drug transport applications. The PMMA-based membrane, with a PMMA/PVP ratio of 5:1, allowed for the fabrication of a uniform membrane structure along the aligned nanofibers. By modulating the fiber diameter and total thickness of the membrane, we could adjust the membrane's porosity for specific cell culture applications. The PMMA-PVP nanofibers exhibited a low polydispersity index value, indicating monodispersed nanofibers and a more homogeneous and uniform fiber network. Both types of membranes demonstrated excellent mechanical integrity under medium perfusion flow rates. However, the PMMA-PVP composition offered a tailored porous structure with modulable porosity based on the fiber diameter and thickness. Our developed platform enables dynamic in vitro modeling of the epithelial barrier and has applications in drug transport and in vitro microphysiological systems.


Assuntos
Dispositivos Lab-On-A-Chip , Nanofibras , Polimetil Metacrilato , Humanos , Células CACO-2 , Porosidade , Polimetil Metacrilato/química , Nanofibras/química , Membranas Artificiais , Poliestirenos/química
8.
Biofabrication ; 16(4)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39029501

RESUMO

Reconstructing the microscale villous organisation and functionality of the small intestine is essential for developingin vitroplatforms tailored for absorption studies as well as for investigating intestinal morphogenesis in development and disease. However, the current fabrication techniques able to mimic the villus-crypt axis poses significant challenges in terms of reconstruction of the complex 3D microarchitecture. These challenges extend beyond mere structural intricacies to encompass the incorporation of diverse cell types and the management of intricate fluid dynamics within the system. Here, we introduce a novel microfluidic device calledIn-Crypts, which integrates a cell-instructive membrane aimed at inducing and guiding Caco-2 cells morphogenesis. Patterned topographical cues embossed onto the porous membrane induce the formation of a well-organized intestinal epithelium, characterized by proliferating crypt-like domains and differentiated villus-like regions. Notably, our cell-instructive porous membrane effectively sustains stem cells development, faithfully replicating the niche environment ofin vivointestinal crypts thus mirroring the cell biogeography observedin vivo. Moreover, by introducing dynamic fluid flow, we provide a faithful recapitulation of the native microenvironmental shear stress experienced by the intestinal epithelium. This stress plays a crucial role in influencing cell behaviour, differentiation, and overall functionality, thus offering a highly realistic model for studying intestinal physiology and pathology. The resulting intestinal epithelium exhibits significantly denser regions of mucus and microvilli, characteristic typically absent in static cultures, upregulating more than 1.5 of the amount expressed in the classical flattened configuration, enhanced epithelial cell differentiation and increased adsorptive surface area. Hence, the innovative design ofIn-Cryptsproves the critical role of employing a cell-instructive membrane in argument the physiological relevance of organs-on-chips. This aspect, among others, will contribute to a more comprehensive understanding of organism function, directly impacting drug discovery and development.


Assuntos
Dispositivos Lab-On-A-Chip , Morfogênese , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Diferenciação Celular , Membranas Artificiais , Engenharia Tecidual
9.
Front Bioeng Biotechnol ; 12: 1401608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070161

RESUMO

Introduction: Conventional culture conditions, such as in T-flasks, require that oxygen diffuse through the medium to reach the islets; in turn, islet surface area density is limited by oxygen availability. To culture a typical clinical islet preparation may require more than 20 T-175 flasks at the standard surface area density of 200 IE/cm2. To circumvent this logistical constraint, we tested islets cultured on top of silicon gas-permeable (GP) membranes which place islets in close proximity to ambient oxygen. Methods: Oxygenation of individual islets under three culture conditions, standard low-density, non-GP high density, and GP high density, were first modeled with finite element simulations. Porcine islets from 30 preparations were cultured for 2 days in devices with GP membrane bottoms or in paired cultures under conventional conditions. Islets were seeded at high density (HD, ∼4000 IE/cm2, as measured by DNA) in both GP and non-GP devices. Results: In simulations, individual islets under standard culture conditions and high density cultures on GP membranes were both well oxygenated whereas non-GP high density cultured islets were anoxic. Similarly, compared to the non-GP paired controls, islet viability and recovery were significantly increased in HD GP cultures. The diabetes reversal rate in nude diabetic mice was similar for HD GP devices and standard cultures but was minimal with non-GP HD cultures. Discussion: Culturing islets in GP devices allows for a 20-fold increase of islet surface area density, greatly simplifying the culture process while maintaining islet viability and metabolism.

10.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891433

RESUMO

The alveoli, critical sites for gas exchange in the lungs, comprise alveolar epithelial cells and pulmonary capillary endothelial cells. Traditional experimental models rely on porous polyethylene terephthalate or polycarbonate membranes, which restrict direct cell-to-cell contact. To address this limitation, we developed AlveoMPU, a new foam-based mortar-like polyurethane-formed alveolar model that facilitates direct cell-cell interactions. AlveoMPU features a unique anisotropic mortar-shaped configuration with larger pores at the top and smaller pores at the bottom, allowing the alveolar epithelial cells to gradually extend toward the bottom. The underside of the film is remarkably thin, enabling seeded pulmonary microvascular endothelial cells to interact with alveolar epithelial cells. Using AlveoMPU, it is possible to construct a bilayer structure mimicking the alveoli, potentially serving as a model that accurately simulates the actual alveoli. This innovative model can be utilized as a drug-screening tool for measuring transepithelial electrical resistance, assessing substance permeability, observing cytokine secretion during inflammation, and evaluating drug efficacy and pharmacokinetics.

11.
Anal Chim Acta ; 1315: 342770, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879207

RESUMO

BACKGROUND: The substrate employed in surface-enhanced Raman spectroscopy (SERS) constitutes an essential element in the cancer detection methodology. In this research, we introduce a three-dimensional (3D) structured SERS substrate that integrates a porous membrane with silver nanoparticles to enhance SERS spectral signals through the utilization of the aggregation effect of silver nanoparticles. This enhancement is crucial because accurate detection results strongly depend on the intensity of specific peaks in Raman spectroscopy. A highly sensitive SERS substrate can significantly improve the accuracy of detection results. RESULTS: We collected 66 plasma samples from individuals with kidney cancer and control individuals, including both bladder cancer patients and healthy individuals. Then, we utilized substrates with and without porous membranes to acquire the SERS spectra of the samples, enabling us to evaluate the enhancement effect of our SERS substrate. The spectral analysis demonstrated enhanced peak intensities in the experimental group (with porous substrate) compared to the control group (without porous substrate). The uniformity and reproducibility of the SERS substrate are also significantly enhanced, which is very helpful for improving the accuracy of detection results. Additionally, the Principal Component Analysis-Linear Discriminant Analysis algorithm (PCA-LDA) was employed to classify the SERS spectra of both groups. In the experimental group, the classification accuracy was 98.5 % for kidney cancer, and 83.3 % for kidney and bladder cancer. Compared to the control group, it improved by 3 % and 12.6 % respectively. SIGNIFICANT: This indicates that our 3D structured SERS substrate combined with multivariate statistical algorithms PCA-LDA can not only improve the accuracy of SERS detection technology in single cancer detection, but also has great potential in multiple cancer detection. This 3D structured SERS substrate is expected to become a new auxiliary means for cancer detection.


Assuntos
Neoplasias Renais , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Humanos , Porosidade , Nanopartículas Metálicas/química , Neoplasias Renais/sangue , Neoplasias Renais/diagnóstico , Análise de Componente Principal , Propriedades de Superfície
12.
Small Methods ; : e2301624, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801014

RESUMO

Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.

13.
Int J Biol Macromol ; 267(Pt 2): 131653, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631568

RESUMO

Aerogel possesses the advantages of high specific surface area, low density, and high porosity, which have shown great application in thermal regulation due to its efficient light scattering capability. However, traditional polymer-based aerogels have poor mechanical properties and lack ductility in outdoor applications, the cooling efficiency of the material is easily affected by damage during transportation, installation, and environmental factors. In this work, combining the porous nature of aerogels and the high ductility of membranes, a polylactic acid-based porous membrane cooler was developed by combining a regular honeycomb surface porous structure design and physical/chemical modification to enhance flexibility, using a simple non-solvent induced phase separation method. This porous membrane exhibits both super-flexibility (116 % elongation at break) and porous characteristics. It achieves a sub-ambient temperature decrease of 4-6 °C under direct sunlight. The optimized porous membrane demonstrates high solar reflectance (94 % of peak reflectivity, 90 % of average reflectivity) and strong infrared emissivity (96 % of peak emissivity, 91 % of average emissivity), it also maintains a solar peak reflectivity of 91 % under 100 % tensile strain and 1000 bending cycles, the cooler still maintains a cooling effect of 2-5 °C below ambient temperature. This work paves the way for developing mechanical flexible and strong radiative coolers for thermal regulation.


Assuntos
Membranas Artificiais , Poliésteres , Poliésteres/química , Porosidade , Polimerização , Temperatura , Resistência à Tração
14.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636150

RESUMO

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Assuntos
Quitosana , Cromatografia de Afinidade , Histidina , Membranas Artificiais , Níquel , Níquel/química , Quitosana/química , Cromatografia de Afinidade/métodos , Histidina/química , Porosidade , Adsorção , Proteínas Imobilizadas/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
15.
Artigo em Inglês | MEDLINE | ID: mdl-38605517

RESUMO

Polymer polyacrylonitrile (PAN), with exceptional mechanical strength and ionic conductivity, is considered a potential electrolyte. However, the huge interfacial impedance of PAN-derived C≡N polar nitrile groups and Li anode limited its application. In this study, a double-stabilized interface was integrated by in situ polymerization of DOL between electrodes and a three-dimensional (3D) porous PAN polymer matrix containing SN plasticizer and LLZTO ceramic fillers to optimize the challenge of interfacial instability. The fabricated PDOL-PAN(SN/LLZTO)-PDOL composite solid electrolyte (CSE) exhibited the maximum ionic conductivities of 1.9 × 10-3 S cm-1 at room temperature and 2.5 × 10-3 S cm-1 at 60 °C, an electrochemical stability window (ESW) of 4.9 V, and a high Li+ transference number (tLi+) of 0.65. In addition, the side reactions of the PAN/Li metal were effectively prevented by inserting PDOL between the 3D porous membrane and Li electrode. Benefiting from the superior interface compatibility and ion conductivity, the Li symmetric battery showed more than 2000 h of cyclability. The solid Li/LiFePO4 full battery delivered excellent cycling performance, showing an original specific capacity of 136.2 mAh g-1 with a capacity retention of 90.1% after 350 cycles at 1C and 60 °C. Furthermore, the cycling of solid-state Li/NCM622 batteries also proved their application potential. This work presents an effective approach to solving interface problems of the PAN electrolyte for solid lithium-metal batteries (LMBs).

16.
Chem Asian J ; 19(14): e202400245, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634677

RESUMO

A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.

17.
ACS Appl Bio Mater ; 7(3): 2000-2011, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447196

RESUMO

Cell culture models of endothelial and epithelial barriers typically use porous membrane inserts (e.g., Transwell inserts) as a permeable substrate on which barrier cells are grown, often in coculture with other cell types on the opposite side of the membrane. Current methods to characterize barrier function in porous membrane inserts can disrupt the barrier or provide bulk measurements that cannot isolate barrier cell resistance alone. Electrical cell-substrate impedance sensing (ECIS) addresses these limitations, but its implementation on porous membrane inserts has been limited by costly manufacturing, low sensitivity, and lack of validation for barrier assessment. Here, we present porous membrane ECIS (PM-ECIS), a cost-effective method to adapt ECIS technology to porous substrate-based in vitro models. We demonstrate high fidelity patterning of electrodes on porous membranes that can be incorporated into well plates of a variety of sizes with excellent cell biocompatibility with mono- and coculture set ups. PM-ECIS provided sensitive, real-time measurement of isolated changes in endothelial cell barrier impedance with cell growth and barrier disruption. Barrier function characterized by PM-ECIS resistance correlated well with permeability coefficients obtained from simultaneous molecular tracer permeability assays performed on the same cultures, validating the device. Integration of ECIS into conventional porous cell culture inserts provides a versatile, sensitive, and automated alternative to current methods to measure barrier function in vitro, including molecular tracer assays and transepithelial/endothelial electrical resistance.


Assuntos
Espectroscopia Dielétrica , Células Endoteliais , Porosidade , Células Endoteliais/metabolismo , Técnicas de Cocultura , Eletrodos
18.
Angew Chem Int Ed Engl ; 63(15): e202320137, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38362792

RESUMO

Membrane separation of aromatics and aliphatics is a crucial requirement in chemical and petroleum industries. However, this task presents a significant challenge due to the lack of membrane materials that can endure harsh solvents, exhibit molecular specificity, and facilitate easy processing. Herein, we present a novel approach to fabricate a covalent triazine framework (CTF) membrane by employing a mix-monomer strategy. By incorporating a spatial monomer alongside a planar monomer, we were able to subtly modulate both the pore aperture and membrane affinity, enabling preferential permeation of aromatics over aliphatics with molecular weight below 200 Dalton (Da). Consequently, we achieved successful all-liquid phase separation of aromatic/aliphatic mixtures. Our investigation revealed that the synergistic effects of size sieving and the affinity between the permeating molecules and the membrane played a pivotal role in separating these closely resembling species. Furthermore, the membrane exhibited remarkable robustness under practical operating conditions, including prolonged operation time, various feed compositions, different applied pressure, and multiple feed components. This versatile strategy offers a feasible approach to fabricate membranes with molecule selectivity toward aromatic/aliphatic mixtures, taking a significant step forward in addressing the grand challenge of separating small organic molecules through membrane technology.

19.
Chemosphere ; 352: 141363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346508

RESUMO

Adsorptive separation membranes are widely utilized for the removal of toxic dyeing pollutants from dyeing wastewater. However, developing novel adsorption membranes with large adsorption capacities and enhanced adsorption performance for dyes in actual wastewater poses a significant challenge. This study focuses on the fabrication of crown ether-containing copolymer porous membrane (CRPM) and investigation of the adsorption performance of dyes from aqueous solutions. The morphology structure and pore size distribution revealed that the membrane was endowed with rich micropores and hierarchical porous structures. Three typical cationic dyes (MB, RhB, CV) and an anionic dye (MO) were selected to evaluate the adsorption behavior. The results of adsorption isotherms and kinetics demonstrated that the adsorption data could be well-fitted using the Freundlich and pseudo-first-order kinetic models, the thermodynamic parameters revealed that the adsorption process of dyes on CRPM is a spontaneous endothermic reaction. The membrane exhibited excellent adsorption performance for cationic dyes, with RhB displaying a higher maximum adsorption capacity than previously reported porous membranes. Notably, dynamic adsorption-desorption filtration demonstrated a rapid removal efficiency, with RhB, MB, and CV achieving removal rates of 99.09%, 98.63%, and 99.14% respectively, after five cycles. The filtration volume of the CRPM membrane was 2.4-fold greater than that of a traditional PVDF membrane when applied to actual dyeing wastewater. DFT theoretical calculations were employed to elucidate the adsorption mechanism. These calculations confirmed the significant roles of electrostatic interactions, H-bonds and π-π interactions in facilitating the high-efficiency adsorption of cationic dyes. These findings highlight the potential of the crown ether-containing copolymer as a promising material for adsorption separation membranes in the treatment of dyeing wastewater.


Assuntos
Éteres de Coroa , Poluentes Químicos da Água , Corantes/química , Águas Residuárias , Éter , Adsorção , Porosidade , Poluentes Químicos da Água/análise , Etil-Éteres , Cátions , Cinética , Polímeros
20.
ACS Biomater Sci Eng ; 10(1): 620-627, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38048415

RESUMO

Cell distribution is one of the primary factors that can affect cell morphology and behaviors, as it determines cell-cell interactions. Despite the importance of cell distribution, the seeding process of in vitro cell culture still highly relies on the traditional method using manual pipetting. Because manual pipetting cannot ensure a uniform cell distribution and has the possibility of compromising experimental reproducibility, an accurate and systemic seeding method that enables uniform cell seeding over versatile culture substrates is required. Here, we developed a perforated plate-based cell seeding device called the CellShower, which enabled uniform cell seeding over a large area of cell culture substrates. The working principles of the CellShower are based on the laminar filling flow and capillary force in microfluidics, and the design of the CellShower was optimized with numerical simulations. The versatility of the CellShower in view of uniform cell seeding was demonstrated by applying it to various types of culture substrates from a conventional culture dish to culture substrates having nanotopography, porous structures, and 3D concave structures. The CellShower and its operating principles are expected to contribute to enhancing the accuracy and reproducibility of biological experiments.


Assuntos
Técnicas de Cultura de Células , Reprodutibilidade dos Testes , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA