Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Toxicol ; 5: 1177586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469456

RESUMO

Introduction: In vitro approaches are an essential tool in screening for toxicity of new chemicals, products and therapeutics. To increase the reproducibility and human relevance of these in vitro assessments, it is advocated to remove animal-derived products such as foetal bovine serum (FBS) from the cell culture system. Currently, FBS is routinely used as a supplement in cell culture medium, but batch-to-batch variability may introduce inconsistency in inter- and intra-lab assessments. Several chemically defined serum replacements (CDSR) have been developed to provide an alternative to FBS, but not every cell line adapts easily and successfully to CDSR-supplemented medium, and the long-term effect on cell characteristics remains uncertain. Aim: The aim of this study was to adapt the TK6 cell line to animal-product free CDSR-supplemented medium and evaluate the long-term effects on cell health, growth, morphology, phenotype, and function. This included a provisional assessment to determine the suitability of the transitioned cell line for standardised genotoxicity testing using the "in vitro mammalian cell micronucleus test" (OECD TG 487). Materials and methods: Gradual adaptation and direct adaptation methodologies were compared by assessing the cell proliferation, size and viability every passage until the cells were fully adapted to animal-free CDSR. The metabolic activity and membrane integrity was assessed every 4-8 passages by PrestoBlue and CytoTox-ONE™ Homogeneous Membrane Integrity Assay respectively. A detailed morphology study by high content imaging was performed and the expression of cell surface markers (CD19 and CD20) was conducted via flow cytometry to assess the potential for phenotypic drift during longer term culture of TK6 in animal-free conditions. Finally, functionality of cells in the OECD TG 487 assay was evaluated. Results: The baseline characteristics of TK6 cells cultured in FBS-supplemented medium were established and variability among passages was used to set up acceptance criteria for CDSR adapted cells. TK6 were adapted to CDSR supplemented medium either via direct or gradual transition reducing from 10% v/v FBS to 0% v/v FBS. The cell growth rate was compromised in the direct adaptation and therefore the gradual adaptation was preferred to investigate the long-term effects of animal-free CDSR on TK6 cells. The new animal cells showed comparable (p > 0.05) viability and cell size as the parent FBS-supplemented cells, with the exception of growth rate. The new animal free cells showed a lag phase double the length of the original cells. Cell morphology (cellular and nuclear area, sphericity) and phenotype (CD19 and CD20 surface markers) were in line (p > 0.05) with the original cells. The new cells cultured in CDSR-supplemented medium performed satisfactory in a pilot OECD TG 487 assay with compounds not requiring metabolic activation. Conclusion: TK6 cells were successfully transitioned to FBS- and animal product-free medium. The new cell cultures were viable and mimicked the characteristics of FBS-cultured cells. The gradual transition methodology utilised in this study can also be applied to other cell lines of interest. Maintaining cells in CDSR-supplemented medium eliminates variability from FBS, which in turn is likely to increase the reproducibility of in vitro experiments. Furthermore, removal of animal derived products from cell culture techniques is likely to increase the human relevance of in vitro methodologies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28541809

RESUMO

The main objective of this study was to evaluate the suitability of Nannochloropsis gaditana to grow by sequential adaptation to TOPW (Table olive processing water) at increased substrate concentrations (10-80%). Sequential adaptation allows growing Nannochloropsis gaditana up to 80% TOPW, although the maximum microalgae biomass productions were achieved for percentages of 20-40%, i.e. 0.308 ± 0.005 g VSS (Volatile Suspended Solids)/L. In all growth experiments, proteins were the majority compound in the grown microalgae biomass (0.44 ± 0.05 g/g VSS), whereas phenols were retained up to a mean concentration of 12.1 ± 1.9 mg total phenols/g VSS. The highest microalgae biomass production rate at rate of 80% TOPW took place in the first two days when most nutrients were also removed. Average removal efficiencies at this percentage of TOPW were 69.1%, 50.9%, 54.3% and 71.8% for total organic carbon, total soluble nitrogen, phosphate and total phenols, respectively. Sequential adaptation can ensure the obtaining of a sustainable microalgae culture as a treatment method for TOPW.


Assuntos
Adaptação Fisiológica , Indústria Alimentícia , Microalgas/crescimento & desenvolvimento , Olea/química , Águas Residuárias/química , Águas Residuárias/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Biomassa , Microalgas/efeitos dos fármacos
3.
J Biosci Bioeng ; 122(4): 427-33, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27478150

RESUMO

Daptomycin, a cyclic anionic lipopeptide compound produced by Streptomyces roseosporus, is used to treat skin infections caused by multi-drug resistant gram-positive pathogens. The biosynthesis of daptomycin is initiated by the condensation of decanoic acid (DA, a 10-carbon unit fatty acid) and the N-terminal l-tryptophan. So, the addition of DA to the fermentation medium is essential for increasing daptomycin production. However, increasing of DA concentration in the fermentation medium was not possible due to the high toxicity of DA. The previous studies reported that the cell growth of S. roseosporus was halted from 1 mM DA. In order to improve daptomycin production with increasing DA concentration in the medium, the DA-resistant S. roseosporus was developed via a sequential-adaptation method. The DA-resistant strain (DAR) showed complete resistance to 1 mM DA, and the daptomycin production was increased 1.4-fold (40.5 ± 0.7 mg/L) compared with the wild-type (28.5 ± 0.8 mg/L) at 1 mM DA. Additionally, the initial step of the daptomycin biosynthesis was enhanced by the overexpression of dptE and dptF in DAR. The dptEF overexpression DAR showed 3.9-fold (156.3 ± 8.2 mg/L) increase in the daptomycin production compared with DAR (40.1 ± 2.6 mg/L) at 1 mM DA.


Assuntos
Antibacterianos/biossíntese , Daptomicina/biossíntese , Ácidos Decanoicos/metabolismo , Ácidos Decanoicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Reatores Biológicos , Farmacorresistência Bacteriana/genética , Fermentação/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA