RESUMO
Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.
RESUMO
The type V-K CRISPR-associated transposons (CASTs) allow RNA-guided DNA integration and have great potential as a programmable site-specific gene insertion tool. Although all core components have been independently characterized structurally, the mechanism of how the transposase TnsB associates with AAA+ ATPase TnsC and catalyzes donor DNA cleavage and integration remains ambiguous. In this study, we demonstrate that TniQ-dCas9 fusion can direct site-specific transposition by TnsB/TnsC in ShCAST. TnsB is a 3'-5' exonuclease that specifically cleaves donor DNA at the end of the terminal repeats and integrates the left end prior to the right end. The nucleotide preference and the cleavage site of TnsB are markedly different from those of the well-documented MuA. We also find that TnsB/TnsC association is enhanced in a half-integration state. Overall, our results provide valuable insights into the mechanism and application expansion of CRISPR-mediated site-specific transposition by TnsB/TnsC.
Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/metabolismo , Mutagênese Insercional , Transposases/genética , Transposases/metabolismoRESUMO
CRISPR-Cas systems have been co-opted by Tn7-like transposable elements to direct RNA-guided transposition. Type V-K CRISPR-associated transposons rely on the concerted activities of the pseudonuclease Cas12k, the AAA+ ATPase TnsC, the Zn-finger protein TniQ, and the transposase TnsB. Here we present a cryo-electron microscopic structure of a target DNA-bound Cas12k-transposon recruitment complex comprised of RNA-guided Cas12k, TniQ, a polymeric TnsC filament and, unexpectedly, the ribosomal protein S15. Complex assembly, mediated by a network of interactions involving the guide RNA, TniQ, and S15, results in R-loop completion. TniQ contacts two TnsC protomers at the Cas12k-proximal filament end, likely nucleating its polymerization. Transposition activity assays corroborate our structural findings, implying that S15 is a bona fide component of the type V crRNA-guided transposon machinery. Altogether, our work uncovers key mechanistic aspects underpinning RNA-mediated assembly of CRISPR-associated transposons to guide their development as programmable tools for site-specific insertion of large DNA payloads.
Assuntos
Proteínas Associadas a CRISPR , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Sistemas CRISPR-Cas , Transposases/genética , Proteínas de Ligação a DNA/metabolismo , RNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genéticaRESUMO
CRISPR-associated transposons (CASTs) are Tn7-like elements that are capable of RNA-guided DNA integration. Although structural data are known for nearly all core transposition components, the transposase component, TnsB, remains uncharacterized. Using cryo-electron microscopy (cryo-EM) structure determination, we reveal the conformation of TnsB during transposon integration for the type V-K CAST system from Scytonema hofmanni (ShCAST). Our structure of TnsB is a tetramer, revealing strong mechanistic relationships with the overall architecture of RNaseH transposases/integrases in general, and in particular the MuA transposase from bacteriophage Mu. However, key structural differences in the C-terminal domains indicate that TnsB's tetrameric architecture is stabilized by a different set of protein-protein interactions compared with MuA. We describe the base-specific interactions along the TnsB binding site, which explain how different CAST elements can function on cognate mobile elements independent of one another. We observe that melting of the 5' nontransferred strand of the transposon end is a structural feature stabilized by TnsB and furthermore is crucial for donor-DNA integration. Although not observed in the TnsB strand-transfer complex, the C-terminal end of TnsB serves a crucial role in transposase recruitment to the target site. The C-terminal end of TnsB adopts a short, structured 15-residue "hook" that decorates TnsC filaments. Unlike full-length TnsB, C-terminal fragments do not appear to stimulate filament disassembly using two different assays, suggesting that additional interactions between TnsB and TnsC are required for redistributing TnsC to appropriate targets. The structural information presented here will help guide future work in modifying these important systems as programmable gene integration tools.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cianobactérias , Elementos de DNA Transponíveis , Transposases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Cianobactérias/enzimologia , Cianobactérias/genética , Proteínas de Ligação a DNA/metabolismo , Transposases/genética , Transposases/metabolismoRESUMO
Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.