Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Pediatr Blood Cancer ; : e31185, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118225

RESUMO

Historically, total body irradiation (TBI) has been delivered using static, parallel opposed photon beams (2D-TBI). Recently, centers have increasingly used intensity-modulated radiation therapy (IMRT) techniques for TBI. Relative to 2D-TBI, IMRT can reduce doses to critical organs (i.e., lungs and kidneys) while delivering myeloablative doses to the rest of the body, so it may decrease the risk of toxicity while maintaining oncologic outcomes. Despite these potential benefits, delivering TBI using IMRT introduces new challenges in treatment planning and delivery. We describe the extensive experience with IMRT-based TBI at Stanford University and City of Hope Cancer Center. These groups, and others, have reported favorable clinical outcomes and have developed methods to optimize treatment planning and delivery. A critical next step is to evaluate the broader adoption of this approach. Therefore, IMRT-based TBI will be incorporated into a prospective, multi-institutional Children's Oncology Group study with careful procedures and safeguards in place.

2.
J Appl Clin Med Phys ; : e14478, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115142

RESUMO

BACKGROUND: Treatment delivery safety and accuracy are essential to control the disease and protect healthy tissues in radiation therapy. For usual treatment, a phantom-based patient specific quality assurance (PSQA) is performed to verify the delivery prior to the treatment. The emergence of adaptive radiation therapy (ART) adds new complexities to PSQA. In fact, organ at risks and target volume re-contouring as well as plan re-optimization and treatment delivery are performed with the patient immobilized on the treatment couch, making phantom-based pretreatment PSQA impractical. In this case, phantomless PSQA tools based on multileaf collimator (MLC) leaf open times (LOTs) verifications provide alternative approaches for the Radixact® treatment units. However, their validity is compromised by the lack of independent and reliable methods for calculating the LOT performed by the MLC during deliveries. PURPOSE: To provide independent and reliable methods of LOT calculation for the Radixact® treatment units. METHODS: Two methods for calculating the LOTs performed by the MLC during deliveries have been implemented. The first method uses the signal recorded by the build-in detector and the second method uses the signal recorded by optical sensors mounted on the MLC. To calibrate the methods to the ground truth, in-phantom ionization chamber LOT measurements have been conducted on a Radixact® treatment unit. The methods were validated by comparing LOT calculations with in-phantom ionization chamber LOT measurements performed on two Radixact® treatment units. RESULTS: The study shows a good agreement between the two LOT calculation methods and the in-phantom ionization chamber measurements. There are no notable differences between the two methods and the same results were observed on the different treatment units. CONCLUSIONS: The two implemented methods have the potential to be part of a PSQA solution for ART in tomotherapy.

3.
J Med Phys ; 49(2): 270-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131420

RESUMO

Purpose: The metal present in the implant creates artifacts during the treatment simulation, which impacts the treatment planning and delivery of the prescribed dose to the target and sparing normal tissues. This retrospective study evaluated the uncertainties in the planning and delivery of doses for prosthesis cases with dedicated phantom. Materials and Methods: In this retrospective study, 11 patients with a hip prosthesis having cervix carcinoma were selected. Two treatment plans were generated on treatment planning system (TPS) for each case. Plan_No_Res was without any beam restriction, and Plan_exit_only was the plan with restricted beam entry through the metallic implant. An indigenous phantom was utilized to verify the accuracy of the treatment. In the phantom, some groves were present, which could be filled by implants that mimic the patient's geometries, like left, right and bilateral femur implants. The delivered doses were recorded using optically stimulated luminescence dosimeters (OSLDs), which were placed at different positions in the phantom. The plans were further calculated using megavoltage computed tomography (MVCT) scans acquired during treatment. Results: The patient data showed no significant dose changes between the two planning methods. The treatment time increases from 412.18 ± 86.65 to 427.36 ± 104.80 with P = 0.03 for Plan_No_Res and Plan_exit_only, respectively. The difference between planned and delivered doses of various points across phantom geometries was within ± 9.5% in each case as left, right, and bilateral implant. The variations between OSLDs and MVCT calculated doses were also within ± 10.8%. Conclusion: The study showed the competency of tomotherapy planning for hip prosthesis cases. The phantom measurements demonstrate the errors in dosimetry near the implant material, suggesting the need for precise methods to deal with artifact-related issues.

4.
J Appl Clin Med Phys ; : e14463, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138877

RESUMO

PURPOSE: This study investigated the use of surface guided radiotherapy (SGRT) in combination with a tomotherapy treatment mode using discrete delivery angles for deep inspiration breath hold (DIBH) treatments of breast cancer (bc). We aimed to assess the feasibility and dosimetric advantages of this approach. MATERIALS AND METHODS: We evaluated camera occlusion in the Radixact treatment system bore and the stability of DIBH signals during couch movement. The SGRT system's ability to maintain signal and surface image accuracy was analyzed at different depths within the bore. Dosimetric parameters were compared and measured for 20 left-sided bc patients receiving TomoDirect (TD) tangential radiotherapy in both DIBH and free breathing (FB). RESULTS: The SGRT system maintained surface coverage and precise DIBH-signal at depths up to 40 cm beyond the treatment center. Camera occlusion occurred in the clavicular and neck regions due to the patient's morphology and gantry geometry. Nonetheless, the system accurately detected respiratory motion for all measurements. The DIBH plans significantly (p < 0.001) reduced mean heart and left anterior descending artery (LAD) radiation doses by up to 40%, with a 50% reduction in near-maximum heart and LAD doses, respectively. No significant dosimetric differences between DIBH and FB were observed in other investigated parameters and volumes. CONCLUSIONS: Camera occlusion and couch movement minimally impacted the real-time surface image accuracy needed for DIBH treatments of bc. DIBH reduced heart and LAD radiation doses significantly compared to FB, indicating the feasibility and dosimetric benefits of combining these modalities.

5.
Phys Eng Sci Med ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080209

RESUMO

The stability of dosiomics features (DFs) and dose-volume histogram (DVH) parameters for detecting disparities in helical tomotherapy planned dose distributions was assessed. Treatment plans of 18 prostate patients were recalculated using the followings: field width (WF) (2.5 vs. 5), pitch factor (PF) (0.433 vs. 0.444), and modulation factor (MF) (2.5 vs. 3). From each of the eight plans per patient, ninety-three original and 744 wavelet-based DFs were extracted, using 3D-Slicer software, across six regions including: target volume (PTV), pelvic lymph nodes (PTV-LN), PTV + PTV-LN (PTV-All), one cm rind around PTV-All (PTV-Ring), rectum, and bladder. For the resulting DFs and DVH parameters, the coefficient of variation (CV) was calculated, and using hierarchical clustering, the features were classified into low/high variability. The significance of parameters on instability was analyzed by a three-way analysis of variance. All DF's were stable in PTV, PTV-LN, and PTV-Ring (average CV ( CV ¯ )  ≤ 0.36). Only one feature in the bladder ( CV ¯  = 0.9), rectum ( CV ¯  = 0.4), and PTV-All ( CV ¯  = 0.37) were considered unstable due to change in MF in the bladder and WF in the PTV-All. The value of CV ¯ for the wavelet features was much higher than that for the original features. Out of 225 unstable wavelet features, 84 features had CV ¯  ≥ 1. The CVs for all the DVHs remained very small ( CV ¯ < 0.06). This study highlights that the sensitivity of DFs to changes in tomotherapy planning parameters is influenced by the region and the DFs, particularly wavelet features, surpassing the effectiveness of DVHs.

6.
Technol Cancer Res Treat ; 23: 15330338241264847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39043035

RESUMO

Background: This retrospective study aimed to investigate the outcomes and adverse events (AEs) associated with adjuvant radiotherapy with helical tomotherapy (hT) after breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS). Methods: Twenty-eight patients with DCIS underwent postoperative hT between 2011 and 2020. hT was chosen since it provided optimal target coverage and tolerable organ-at-risk doses to the lungs and heart when tangential 3-dimensional conformal radiotherapy (3D-CRT) was presumed to provide unfavorable dosimetry. The median total (single) dose was 50.4 Gy (1.8 Gy). The median time between BCS and the start of hT was 5 weeks (range, 4-38 weeks). Statistical analysis included local recurrence-free survival, overall survival (OS), and secondary cancer-free survival. AEs were classified according to the Common Toxicity Criteria for Adverse Events, version 5. Results: The patients' median age was 58 years. The median follow-up period was 61 months (range, 3-123 months). The 1-, 3-, and 5-year OS rates were 100% each. None of the patients developed secondary cancer, local recurrence, or invasive breast cancer during follow-up. The most common acute AEs were dermatitis (n = 27), fatigue (n = 4), hyperpigmentation (n = 3), and thrombocytopenia (n = 4). The late AE primarily included surgical scars (n = 7) and hyperpigmentation (n = 5). None of the patients experienced acute or late AEs > grade 3. The mean conformity and homogeneity indices were 0.9 (range, 0.86-0.96) and 0.056 (range, 0.05-0.06), respectively. Conclusion: hT after BCS for DCIS is a feasible and safe form of adjuvant radiotherapy for patients in whom 3D-CRT is contraindicated due to unfavorable dosimetry. During follow-up, there were no recurrences, invasive breast cancer diagnoses, or secondary cancers, while the adverse effects were mild.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Mastectomia Segmentar , Radioterapia de Intensidade Modulada , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Idoso , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Carcinoma Intraductal não Infiltrante/radioterapia , Carcinoma Intraductal não Infiltrante/cirurgia , Carcinoma Intraductal não Infiltrante/patologia , Adulto , Estudos Retrospectivos , Radioterapia Adjuvante/efeitos adversos , Radioterapia Adjuvante/métodos , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento , Dosagem Radioterapêutica , Seguimentos , Terapia Combinada
7.
Radiat Oncol ; 19(1): 88, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978062

RESUMO

PURPOSE: This study aimed to develop an automated Tomotherapy (TOMO) planning method for cervical cancer treatment, and to validate its feasibility and effectiveness. MATERIALS AND METHODS: The study enrolled 30 cervical cancer patients treated with TOMO at our center. Utilizing scripting and Python environment within the RayStation (RaySearch Labs, Sweden) treatment planning system (TPS), we developed automated planning methods for TOMO and volumetric modulated arc therapy (VMAT) techniques. The clinical manual TOMO (M-TOMO) plans for the 30 patients were re-optimized using automated planning scripts for both TOMO and VMAT, creating automated TOMO (A-TOMO) and automated VMAT (A-VMAT) plans. We compared A-TOMO with M-TOMO and A-VMAT plans. The primary evaluated relevant dosimetric parameters and treatment plan efficiency were assessed using the two-sided Wilcoxon signed-rank test for statistical analysis, with a P-value < 0.05 indicating statistical significance. RESULTS: A-TOMO plans maintained similar target dose uniformity compared to M-TOMO plans, with improvements in target conformity and faster dose drop-off outside the target, and demonstrated significant statistical differences (P+ < 0.01). A-TOMO plans also significantly outperformed M-TOMO plans in reducing V50Gy, V40Gy and Dmean for the bladder and rectum, as well as Dmean for the bowel bag, femoral heads, and kidneys (all P+ < 0.05). Additionally, A-TOMO plans demonstrated better consistency in plan quality. Furthermore, the quality of A-TOMO plans was comparable to or superior than A-VMAT plans. In terms of efficiency, A-TOMO significantly reduced the time required for treatment planning to approximately 20 min. CONCLUSION: We have successfully developed an A-TOMO planning method for cervical cancer. Compared to M-TOMO plans, A-TOMO plans improved target conformity and reduced radiation dose to OARs. Additionally, the quality of A-TOMO plans was on par with or surpasses that of A-VMAT plans. The A-TOMO planning method significantly improved the efficiency of treatment planning.


Assuntos
Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/radioterapia , Feminino , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação
8.
Med Dosim ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38890058

RESUMO

This study aimed to investigate whether the RapidPlan (RP) model configured by volumetric modulated arc therapy (VMAT) plans of nasopharyngeal carcinoma (NPC) could be used to assist in the optimization of HT plans and improve their quality. An RP model was trained using 100 clinically accepted VMAT plans of NPC patients. The predicted dose constraints of the VMAT trained RP model were used to reoptimize 25 consecutive clinically accepted HT plans (HT_clinical) and perform new VMAT plans based on the same computed topography (CT). The dosimetric quality of the reoptimized HT plans (HT_reoptimized), HT_clinical, and VMAT group were compared. The minimum dose encompassing 2% target (D2%), the minimum dose encompassing 98% target (D98%), homogeneity index (HI) and conformity index (CI) were similar for most targets between the HT_clinical and HT_reoptimized plans, although certain targets in the HT_reoptimized plans had higher D2% and HI and lower D98%. The HT_reoptimized plans outperformed the HT_clinical plans in the Dmax and D1cc of the spinal cord, V40Gy of the left temporal lobe, Dmean and V30Gy of the oral cavity, Dmean of the larynx and thyroid, and the differences were statistically significant. HT plans had higher CI and HI than VMAT plans. HT plans outperformed VMAT plans in the Dmax of the spinal cord and lenses, V30Gy of the oral cavity and parotids, and V40Gy of the temporal lobes, but underperformed in the Dmax and D1cc of the brainstem, D1cc of the spinal cord and Dmean of the oral cavity. The VMAT-based RP model can be used to assist in the planning of HT plans and improve the dosimetry quality of HT plans.

9.
Radiother Oncol ; 197: 110366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830537

RESUMO

As a component of myeloablative conditioning before allogeneic hematopoietic stem cell transplantation (HSCT), Total Body Irradiation (TBI) is employed in radiotherapy centers all over the world. In recent and coming years, many centers are changing their technical setup from a conventional TBI technique to multi-isocenter conformal arc therapy techniques such as Volumetric Modulated Arc Therapy (VMAT) or Helical Tomotherapy (HT). These techniques allow better homogeneity and control of the target prescription dose, and provide more freedom for individualized organ-at-risk sparing. The technical design of multi-isocenter/multi-plan conformal TBI is complex and should be developed carefully. A group of early adopters with conformal TBI experience using different treatment machines and treatment planning systems came together to develop technical recommendations and share experiences, in order to assist departments wishing to implement conformal TBI, and to provide ideas for standardization of practices.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Irradiação Corporal Total/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Dosagem Radioterapêutica , Transplante de Células-Tronco Hematopoéticas/métodos , Órgãos em Risco/efeitos da radiação
10.
Artigo em Inglês | MEDLINE | ID: mdl-38874192

RESUMO

INTRODUCTION: Locally advanced carcinoma cervix (LACC) is a heterogeneous disease with variable combinations of primary tumour extensions with or without nodal involvement. Metabolic information from 18 fluro-deoxyglucose positron emission tomography combined with contrast-enhanced computerized tomography (FDG PET-CT) may potentially augment treatment decision-making for LACC. This study ascertained FDG-PET CT influence on chemoradiation therapy (CTRT) decisions in LACC. We report oncologic and patient-reported outcome measures (PROMs). METHODS: FDG PET-CT scans were reviewed independently by two nuclear medicine specialists and two radiation oncologists. Pelvic CTRT plan digressions were documented and therapy was adapted accordingly. Pelvis radiation (50 Gy/25#/5 weeks) using tomotherapy with weekly cisplatin was used in node-negative disease. Dose-escalated simultaneous integrated boost (SIB) 60 Gy/25#/5 weeks was delivered to involved pelvic nodes. All received brachytherapy. Post-treatment PET-CT scans were at 6 months. Functional assessment of cancer therapy scores were calculated at baseline, treatment completion, 3 months, 1 year and 3 years. RESULTS: Between November 2015 and January 2018, 85 patients were screened, and 77 consented. Extrapelvic disease was seen in 12 (16%) patients (9 para-aortic nodes, 2 distant metastases and 1 synchronous carcinoma breast); 60 patients were included in the final analysis. Decision changes were seen in 10/77 (13%) screened, 8/60 (13%) included and 32 (53.3%) received SIB. Post-treatment, 27 (45%) had grade 2 GI/GU/GYN toxicity, one (2%) had grade 3 GI and five (8.3%) had grade 3 neutropenia. At median overall survival of 54.2 months (95% CI 52.8-58.3), 5-year local failure, pelvic nodal and para-aortic nodal-free survival were 86.8% (95% CI 78.0-96.6), 85.2% (95% CI 76.1-95.3) and 85.2% (95% CI 76.2-95.4). Functional assessment of cancer therapy trial outcome index (FACT TOI) improved by 10.43 at 3 months with no further decline. Grade 3 toxicity was noted for abdominal pain in one (1.7%), cystitis in four (6.7%) and lymphoedema in one (1.7%) at 5 years. CONCLUSION: PET-CT resulted in major decision changes in 13%. PET-adapted CTRT was associated with acceptable toxicity, encouraging long-term survival and improvement in PROMS.

11.
Technol Cancer Res Treat ; 23: 15330338241260646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841792

RESUMO

OBJECTIVE: The purpose of this research was to compare two treatment techniques for oropharyngeal cancers: conventional linac-based static intensity-modulated radiotherapy (sIMRT) and helical tomotherapy (HT). The study examined several parameters, including target coverage, organs at risk, integral dose, and beam on time. Additionally, the study evaluated the doses to the parotid, temporomandibular joint, and pharyngeal constrictor muscles, which are important for swallowing. METHOD: The present study retrospectively analyzed the data of 13 patients with oropharyngeal cancer who underwent radiotherapy between 2019 and 2021. The treatment plans for each patient were regenerated using both sIMRT and HT treatment planning systems with the sequential boost method. The techniques were evaluated and compared based on dose-volume histogram, homogeneity index, and conformity index parameters. The target coverage and organs at risk were statistically compared for two techniques. Additionally, the doses received by the healthy tissue volume were obtained for integral dose evaluation. The beam on time for each technique was assessed. RESULTS: When considering planning target volume evaluation, there was no difference in Dmeans between the two techniques and sIMRT demonstrated higher D2% values compared to the HT. The HT technique had better results for all organs at risk, such as the parotid, temporomandibular joint, and pharyngeal constrictor muscle. As for integral dose, it has been shown that the sIMRT technique provides better protection compared to HT. In addition, the beam on time was also longer with the HT technique. CONCLUSION: Both techniques may provide optimal target coverage for patients with oropharyngeal cancer. HT conferred notable advantages, especially with regard to critical structures implicated in swallowing, such as the parotid, temporomandibular joint, and pharyngeal constrictor muscle, in comparison to sIMRT.


Assuntos
Órgãos em Risco , Neoplasias Orofaríngeas , Glândula Parótida , Músculos Faríngeos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Articulação Temporomandibular , Humanos , Neoplasias Orofaríngeas/radioterapia , Glândula Parótida/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Articulação Temporomandibular/efeitos da radiação , Masculino , Estudos Retrospectivos , Músculos Faríngeos/efeitos da radiação , Feminino , Idoso , Pessoa de Meia-Idade
12.
Front Oncol ; 14: 1392313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741780

RESUMO

Introduction: Radiation-induced brachial plexopathy (RIBP) is one of the most concerning late radiation effects after hypofractionated postmastectomy radiotherapy (HF-PMRT) to the chest wall and regional lymph nodes. The purpose of this study was to investigate the RIBP events occurring in breast cancer patients after HF-PMRT using intensity-modulated radiation therapy (IMRT) by helical tomotherapy. Furthermore, the dosimetric parameters of the ipsilateral brachial plexus were reported. Materials and methods: Breast cancer patients who underwent HF-PMRT using the IMRT via HT at our institute were included. In the first cohort, subjective RIBP symptoms were measured using a QuickDASH questionnaire, whereas objective RIBP events were assessed using a comprehensive physical evaluation in the second cohort. The ipsilateral brachial plexus from all eligible patients' treatment plans was contoured, and the dosimetric parameters were explored. Results: From March 2014 to December 2022, 229 patients were enrolled; 107 and 72 individuals were in the first and second cohorts, respectively. The first cohort's median follow-up period was 27 months, and the second cohort was 31 months. In the first cohort, 80 patients (74.77%) had a normal function, 21 (19.63%) had a mild grade, and 6 (5.61%) had a moderate grade; no severe or very severe RIBP was observed. However, the comprehensive physical evaluation of the second cohort indicated no RIBP events. Dosimetric analysis revealed that the median maximum dose was 44.52, 44.52, and 44.60 Gy; the median mean dose was 33.00, 32.23, and 32.33 Gy; and the median dose at 0.03 cc was 44.33, 44.36, and 44.39 Gy for all patients, patients in the first and second cohort, respectively. Each dosimetric parameter was evaluated, and no statistically significant differences were detected. Conclusion: The absence of RIBP events supports the safety of employing HF-PMRT by HT for the chest wall and all regional lymph nodes. We propose that applying the ICRU Report 83 criteria for IMRT planning, which limit the maximum dose (107% of the prescribed dose) to less than 2% of the planning target volume and exclude the brachial plexus region from the maximal dose area, is a practical way to minimize the risk of RIBP from HF-PMRT.

13.
Sci Rep ; 14(1): 10719, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729975

RESUMO

The shielding parameters can vary depending on the geometrical structure of the linear accelerators (LINAC), treatment techniques, and beam energies. Recently, the introduction of O-ring type linear accelerators is increasing. The objective of this study is to evaluate the shielding parameters of new type of linac using a dedicated program developed by us named ORSE (O-ring type Radiation therapy equipment Shielding Evaluation). The shielding evaluation was conducted for a total of four treatment rooms including Elekta Unity, Varian Halcyon, and Accuray Tomotherapy. The developed program possesses the capability to calculate transmitted dose, maximum treatable patient capacity, and shielding wall thickness based on patient data. The doses were measured for five days using glass dosimeters to compare with the results of program. The IMRT factors and use factors obtained from patient data showed differences of up to 65.0% and 33.8%, respectively, compared to safety management report. The shielding evaluation conducted in each treatment room showed that the transmitted dose at every location was below 1% of the dose limit. The results of program and measurements showed a maximum difference of 0.003 mSv/week in transmitted dose. The ORSE program allows for the shielding evaluation results to the clinical environment of each institution based on patient data.


Assuntos
Aceleradores de Partículas , Proteção Radiológica , Aceleradores de Partículas/instrumentação , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Humanos , Radioterapia de Intensidade Modulada/métodos , Doses de Radiação
14.
Strahlenther Onkol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801448

RESUMO

BACKGROUND: The immune system has been identified as an organ at risk in esophageal and lung cancers. However, the dosimetric impact of radiotherapy on immune system exposure in patients treated for breast cancer has never been studied. METHODS: A monocentric retrospective dosimetric study included 163 patients treated at the Institut Curie (Paris, France) between 2010 and 2016 with locoregional helical tomotherapy after conservative surgery or total mastectomy. The effective dose to the immune system (EDIC) was calculated based on diverse dosimetric parameters. The clinical and volumetric determinants of EDIC in adjuvant radiotherapy of breast cancer were analyzed. RESULTS: The median EDIC for the population was 4.23 Gy, ranging from 1.82 to 6.19 Gy. Right-sided radiotherapy and regional lymph node irradiation were associated with significantly higher EDIC in univariate (4.38 Gy vs. 3.94 Gy, p < 0.01, and 4.27 Gy vs. 3.44 Gy, p < 0.01, respectively) and multivariate analyses (p < 0.01 and p < 0.01). Liver overexposure was the main contributor to EDIC increase in right-sided breast cancer patients (+0.38 Gy [95%CI: +0.30; +0.46]), while the integral total dose increase was the main contributor to EDIC increase in cases of regional node irradiation (+0.63 Gy [95%CI: +0.42; +0.85]). CONCLUSION: The EDIC score during adjuvant radiotherapy after breast cancer was statistically significantly higher in the case of right-sided radiotherapy and regional lymph node irradiation. Liver irradiation is the main contributor to immune system exposure in adjuvant irradiation of right-sided breast cancer. Populations in which an association between EDIC and survival would exist have yet to be identified but could potentially include patients treated for triple-negative breast cancer with a poor response to neoadjuvant chemoimmunotherapy.

15.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791961

RESUMO

BACKGROUND: This work aimed to determine the optimum VOLOTM Ultra algorithm parameters for tomotherapy treatments. METHODS: 1056 treatment plans were generated with VOLOTM Ultra for 36 patients and six anatomical locations. The impact of varying four parameters was studied: the accelerated treatment (AT), leaf open/close time (LOT) cutoff, normal tissue objective (NTO) weight, and number of iterations. The beam-on time and dosimetric metrics were quantified for the target volumes and organs at risk (OARs). Delivery quality assurance measurements were obtained for 36 plans to assess the delivery accuracy. RESULTS: The mean beam-on time for the helical tomotherapy and TomoDirect (TD) plans decreased by 26.6 ± 2.8% and 17.4 ± 4.3%, respectively, when the accelerated treatment parameter was increased from 0 to 10, at the expense of the planning target volume (PTV) coverage (2% lower D98%) and OAR dose (up to 15% increase). For TD plans, it seems preferable to systematically use an AT value of 10. Increasing the number of iterations beyond six seems unnecessary. In this study, an NTO weight of approximately 10 appears to be ideal and eliminates the need to use rings in the treatment plan. Finally, no correlation was found between the leaf open/close time cutoff and the delivery accuracy, while a leaf open/close cutoff of 60 ms seemed to degrade dosimetry quality. CONCLUSION: Optimal values for the AT, LOT cutoff, NTO weight, and number of optimization rounds were identified and should help improve the management of patients whose tomotherapy treatments are planned with VOLOTM Ultra.

16.
In Vivo ; 38(3): 1412-1420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688603

RESUMO

BACKGROUND/AIM: To compare implant sparing irradiation with conventional radiotherapy (RT) using helical (H) and TomoDirect (TD) techniques in breast cancer patients undergoing immediate breast reconstruction (IBR). PATIENTS AND METHODS: The dosimetric parameters of 40 patients with retropectoral implants receiving 50.4 Gy delivered in 28 fractions were analyzed. Three plans were created: H plan using conventional planning target volume (PTV) that included the chest wall, skin, and implant; TD plan using conventional PTV; and Hs plan using implant-sparing PTV. The H, TD, and Hs plans were compared for PTV doses, organ-at-risk (OAR) doses, and treatment times. RESULTS: Dose distribution in the Hs plan was less homogeneous and uniform than that in the H and TD plans. The TD plan had lower lung, heart, contralateral breast, spinal cord, liver, and esophagus doses than the Hs plan. Compared to the Hs plan, the H plan had lower lung volume receiving 5Gy (V5) (39.1±3.9 vs. 41.2±3.9 Gy; p<0.001), higher V20 (12.3±1.3 vs. 11.5±2.6 Gy; p=0.02), and higher V30 (7.5±1.6 vs. 4.4±1.7 Gy; p<0.001). H plan outperformed Hs plan in heart dosimetric parameters except V20. The Hs plan had significantly lower mean implant doses (43.4±2.1 Gy) than the H plan (51.4±0.5 Gy; p<0.001) and the TD plan (51.9±0.6 Gy; p<0.001). Implementing an implant sparing technique for silicone dose reduction decreases lung doses. CONCLUSION: Conventional H and TD plans outperform the implant sparing helical plan dosimetrically. Because capsular contracture during RT is unpredictable, long-term clinical outcomes are required to determine whether silicon should be spared.


Assuntos
Neoplasias da Mama , Mamoplastia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Pessoa de Meia-Idade , Mamoplastia/métodos , Adulto , Implantes de Mama , Radiometria , Idoso
17.
Radiat Oncol ; 19(1): 49, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627747

RESUMO

OBJECTIVE: This study evaluates various craniospinal irradiation (CSI) techniques used in Turkish centers to understand their advantages, disadvantages and overall effectiveness, with a focus on enhancing dose distribution. METHODS: Anonymized CT scans of adult and pediatric patients, alongside target volumes and organ-at-risk (OAR) structures, were shared with 25 local radiotherapy centers. They were tasked to develop optimal treatment plans delivering 36 Gy in 20 fractions with 95% PTV coverage, while minimizing OAR exposure. The same CT data was sent to a US proton therapy center for comparison. Various planning systems and treatment techniques (3D conformal RT, IMRT, VMAT, tomotherapy) were utilized. Elekta Proknow software was used to analyze parameters, assess dose distributions, mean doses, conformity index (CI), and homogeneity index (HI) for both target volumes and OARs. Comparisons were made against proton therapy. RESULTS: All techniques consistently achieved excellent PTV coverage (V95 > 98%) for both adult and pediatric patients. Tomotherapy closely approached ideal Dmean doses for all PTVs, while 3D-CRT had higher Dmean for PTV_brain. Tomotherapy excelled in CI and HI for PTVs. IMRT resulted in lower pediatric heart, kidney, parotid, and eye doses, while 3D-CRT achieved the lowest adult lung doses. Tomotherapy approached proton therapy doses for adult kidneys and thyroid, while IMRT excelled for adult heart, kidney, parotid, esophagus, and eyes. CONCLUSION: Modern radiotherapy techniques offer improved target coverage and OAR protection. However, 3D techniques are continued to be used for CSI. Notably, proton therapy stands out as the most efficient approach, closely followed by Tomotherapy in terms of achieving superior target coverage and OAR protection.


Assuntos
Radiação Cranioespinal , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Adulto , Humanos , Criança , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiação Cranioespinal/métodos , Turquia , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
18.
Clin Transl Radiat Oncol ; 46: 100777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38628594

RESUMO

Objective: As craniospinal irradiation (CSI) is delivered more frequently by helical tomotherapy (HT) with few reports about late effects, we analysed all patients treated in our centre over an 11-year period. Methods and materials: Our study included all patients that underwent CSI by HT, between September 2009 and January 2020, in the Department of Radiation Oncology of the Toulouse Cancer Institute. Acute radiotherapy toxicities were reported and medium- to long-term outcomes analysed. Results: Among the 79 patients included, 70.9 % were younger than 18 years at diagnosis, the median age was 13 (range: 1-52) at the time of radiation therapy, 67.1 % of patients had medulloblastoma. Half of them (49.4 %) had a metastatic disease at diagnosis. The median dose of CSI was 36 Gy (range, 18-36). Seventy-seven patients received a radiation boost to the original location of the primary tumour (97.5 %), 32 patients also received a boost to their metastatic sites (40.5 %). Median follow-up was 55.5 months (95 %CI = [41.2; 71.8]). The 3-year event-free survival rate was 66.3 % (95 %CI = [54.2; 75.9]). Most patients presented with acute haematological toxicities during CSI (85.9 %), predominantly severe thrombocytopenia (39.7 %). Among the 64 patients assessed for medium- and long-term outcomes, 52 survived and 47 were alive and disease-free at the latest follow-up visit on record. There were 3.8 % secondary tumours: two meningiomas and one diffuse intrinsic pontine glioma. Adult and paediatric patients respectively presented with secondary cataract (4.3 % vs 22.0 %), persistent hearing disorders (26.1 % vs 29.3 %), pulmonary or cardiac late effects (4.3 % vs 2.4 %), hormonal pituitary gland deficiencies (30.0 % vs 56.8 %) and psycho-cognitive disorders (56.5 % vs 53.7 %). Conclusion: CSI dispensed by HT, did not result in any additional acute or late toxicities when compared to 3D-CSI. There was no increase in the secondary tumour rate compared to that reported in the literature.

19.
Sci Rep ; 14(1): 8436, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600141

RESUMO

The purpose of this study was to establish an integrated predictive model that combines clinical features, DVH, radiomics, and dosiomics features to predict RIHT in patients receiving tomotherapy for nasopharyngeal carcinoma. Data from 219 patients with nasopharyngeal carcinoma were randomly divided into a training cohort (n = 175) and a test cohort (n = 44) in an 8:2 ratio. RIHT is defined as serum thyroid-stimulating hormone (TSH) greater than 5.6 µU/mL, with or without a decrease in free thyroxine (FT4). Clinical features, 27 DVH features, 107 radiomics features and 107 dosiomics features were extracted for each case and included in the model construction. The least absolute shrinkage and selection operator (LASSO) regression method was used to select the most relevant features. The eXtreme Gradient Boosting (XGBoost) was then employed to train separate models using the selected features from clinical, DVH, radiomics and dosiomics data. Finally, a combined model incorporating all features was developed. The models were evaluated using receiver operating characteristic (ROC) curves and decision curve analysis. In the test cohort, the area under the receiver operating characteristic curve (AUC) for the clinical, DVH, radiomics, dosiomics and combined models were 0.798 (95% confidence interval [CI], 0.656-0.941), 0.673 (0.512-0.834), 0.714 (0.555-0.873), 0.698 (0.530-0.848) and 0.842 (0.724-0.960), respectively. The combined model exhibited higher AUC values compared to other models. The decision curve analysis demonstrated that the combined model had superior clinical utility within the threshold probability range of 1% to 79% when compared to the other models. This study has successfully developed a predictive model that combines multiple features. The performance of the combined model is superior to that of single-feature models, allowing for early prediction of RIHT in patients with nasopharyngeal carcinoma after tomotherapy.


Assuntos
Hipotireoidismo , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Radioterapia de Intensidade Modulada/efeitos adversos , Aprendizado de Máquina , Neoplasias Nasofaríngeas/radioterapia , Estudos Retrospectivos
20.
Artigo em Inglês | MEDLINE | ID: mdl-38550657

RESUMO

Introduction: The clinical implementation of deep inspiratory breath-hold (DIBH) radiotherapy to reduce cardiac exposure in patients with left-sided breast cancer is challenging with helical tomotherapy(HT) and has received little attention. We describe our novel approach to DIBH irradiation in HT using a specially designed frame and manual gating, and compare cardiac substructure doses with the free-breathing (FB) technique. Material and methods: The workflow incorporates staggered junctions and a frame that provides tactile feedback to the patient and monitoring for manual cut-off. The treatment parameters and clinical outcome of 20 patients with left-sided breast cancer who have undergone DIBH radiotherapy as a part of an ongoing prospective registry are reported. All patients underwent CT scans in Free Breathing (FB) and DIBH using the in-house Respiframe, which incorporates a tactile feedback-based system with an indicator pencil. Plans compared target coverage, cardiac doses, synchronizing treatment with breath-hold and avoiding junction repetition. MVCT scans are used for patient alignment. Results: The mean dose (Dmean) to the heart was reduced by an average of 34 % in DIBH-HT compared to FB-HT plans (3.8 Gy vs 5.7 Gy). Similarly, 32 % and 67.8 % dose reduction were noted in the maximum dose (D0.02 cc) of the left anterior descending artery, mean 12.3 Gy vs 18.1 Gy, and mean left ventricle V5Gy 13.2 % vs 41.1 %, respectively. The mean treatment duration was 451.5 sec with a median 8 breath-holds; 3 % junction locations between successive breath-holds were replicated. No locoregional or distant recurrences were observed in the 9-month median follow-up. Conclusion: Our workflow for DIBH with Helical-Tomotherapy addresses patient safety, treatment precision and challenges specific to this treatment unit. The workflow prevents junction issues by varying daily breath-hold durations and avoiding junction locations, providing a practical solution for left-sided breast cancer treatment with HT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA