Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biopharm Drug Dispos ; 45(3): 149-158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38886878

RESUMO

Icaritin is a prenylflavonoid derivative of the genus Epimedium (Berberidaceae) and has a variety of pharmacological actions. Icaritin is approved by the National Medical Products Administration as an anticancer drug that exhibits efficacy and safety advantages in patients with hepatocellular carcinoma cells. This study aimed to evaluate the inhibitory effects of icaritin on UDP-glucuronosyltransferase (UGT) isoforms. 4-Methylumbelliferone (4-MU) was employed as a probe drug for all the tested UGT isoforms using in vitro human liver microsomes (HLM). The inhibition potentials of UGT1A1 and 1A9 in HLM were further tested by employing 17ß-estradiol (E2) and propofol (PRO) as probe substrates, respectively. The results showed that icaritin inhibits UGT1A1, 1A3, 1A4, 1A7, 1A8, 1A10, 2B7, and 2B15. Furthermore, icaritin exhibited a mixed inhibition of UGT1A1, 1A3, and 1A9, and the inhibition kinetic parameters (Ki) were calculated to be 3.538, 2.117, and 0.306 (µM), respectively. The inhibition of human liver microsomal UGT1A1 and 1A9 both followed mixed mechanism, with Ki values of 2.694 and 1.431 (µM). This study provides supporting information for understanding the drug-drug interaction (DDI) potential of the flavonoid icaritin and other UGT-metabolized drugs in clinical settings. In addition, the findings provide safety evidence for DDI when liver cancer patients receive a combination therapy including icaritin.


Assuntos
Interações Medicamentosas , Flavonoides , Glucuronosiltransferase , Microssomos Hepáticos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Humanos , Flavonoides/farmacologia , Microssomos Hepáticos/metabolismo , Estradiol/farmacologia , Himecromona/farmacologia , Propofol/farmacologia , Inibidores Enzimáticos/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38889874

RESUMO

Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Intestino Delgado , Fígado , Nitrocompostos , Especificidade da Espécie , Tiazóis , Animais , Glucuronosiltransferase/metabolismo , Humanos , Cães , Tiazóis/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/enzimologia , Intestino Delgado/efeitos dos fármacos , Camundongos , Ratos , Nitrocompostos/metabolismo , Fígado/metabolismo , Fígado/enzimologia , Fígado/efeitos dos fármacos , Masculino , Glucuronídeos/metabolismo , Macaca fascicularis , Microssomos Hepáticos/metabolismo , Antiparasitários/metabolismo , Feminino , Microssomos/metabolismo , Microssomos/enzimologia , Ratos Sprague-Dawley , Isoenzimas/metabolismo
3.
Arch Toxicol ; 98(3): 837-848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182911

RESUMO

Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), bisphenol A (BPA) analogs, are endocrine-disrupting chemicals predominantly metabolized into glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in humans and rats. In the present study, TBBPA and TCBPA glucuronidation by the liver microsomes of humans and laboratory animals (monkeys, dogs, minipigs, rats, mice, and hamsters) and recombinant human hepatic UGTs (10 isoforms) were examined. TBBPA glucuronidation by the liver microsomes followed the Michaelis-Menten model kinetics in humans, rats, and hamsters and the biphasic model in monkeys, dogs, minipigs, and mice. The CLint values based on the Eadie-Hofstee plots were mice (147) > monkeys (122) > minipigs (108) > humans (100) and rats (98) > dogs (81) > hamsters (47). TCBPA glucuronidation kinetics by the liver microsomes followed the biphasic model in all species except for minipigs, which followed the Michaelis-Menten model. The CLint values were monkeys (172) > rats (151) > mice (134) > minipigs (104), dogs (102), and humans (100) > hamsters (88). Among recombinant human UGTs examined, UGT1A1 and UGT1A9 showed higher TBBPA and TCBPA glucuronidation abilities. The kinetics of TBBPA and TCBPA glucuronidation followed the substrate inhibition model in UGT1A1 and the Michaelis-Menten model in UGT1A9. The CLint values were UGT1A1 (100) > UGT1A9 (42) for TBBPA glucuronidation and UGT1A1 (100) > UGT1A9 (53) for TCBPA glucuronidation, and the activities at high substrate concentration ranges were higher in UGT1A9 than in UGT1A1 for both TBBPA and TCBPA. These results suggest that the glucuronidation abilities toward TBBPA and TCBPA in the liver differ extensively across species, and that UGT1A1 and UGT1A9 expressed in the liver mainly contribute to the metabolism and detoxification of TBBPA and TCBPA in humans.


Assuntos
Clorofenóis , Fígado , Microssomos Hepáticos , Bifenil Polibromatos , Humanos , Animais , Ratos , Camundongos , Cães , Suínos , Porco Miniatura/metabolismo , Microssomos Hepáticos/metabolismo , Fígado/metabolismo , Glucuronosiltransferase/metabolismo , Animais de Laboratório/metabolismo , Isoformas de Proteínas/metabolismo , Haplorrinos/metabolismo , Cinética , Glucuronídeos/metabolismo , Difosfato de Uridina/metabolismo
4.
Drug Metab Dispos ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37879848

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling has become the established method for predicting human pharmacokinetics (PK) and drug-drug interactions (DDI). The number of drugs cleared by non-CYP enzyme metabolism has increased steadily and to date, there is no consolidated overview of PBPK modeling for drugs cleared by non-CYP enzymes. This review aims to describe the state-of-the-art for PBPK modeling for drugs cleared via non-CYP enzymes, to identify successful strategies, to describe gaps and to provide suggestion to overcome them. To this end, we conducted a detailed literature search and found 58 articles published before the 1st of January 2023 containing 95 examples of clinical PBPK models for 62 non-CYP enzyme substrates. Reviewed articles covered the drug clearance by uridine 5'-diphospho-glucuronosyltransferases (UGTs), aldehyde oxidase (AO), flavin-containing monooxygenases (FMOs), sulfotransferases (SULTs) and carboxylesterases (CES), with UGT2B7, UGT1A9, CES1, FMO3 and AO being the enzymes most frequently involved. In vitro-in vivo extrapolation (IVIVE) of intrinsic clearance and the bottom-up PBPK modeling involving non-CYP enzymes remains challenging. We observed that the middle-out modeling approach was applied in 80% of the cases, with metabolism parameters optimized in 73% of the models. Our review could not identify a standardized approach used for model optimization based on clinical data, with manual optimization employed most frequently. Successful development of models for UGT2B7, UGT1A9, CES1, and FMO3 substrates provides a foundation for other drugs metabolized by these enzymes and guides the way forward in creating PBPK models for other enzymes in these families. Significance Statement Our review charts the rise of PBPK modeling for drugs cleared by non-CYP enzymes. Analyzing 58 articles and 62 non-CYP enzyme substrates, we found that UGTs, AO, FMOs, SULTs, and CES were the main enzyme families involved and that UGT2B7, UGT1A9, CES1, FMO3 and AO are the individual enzymes with the strongest PBPK modeling precedents. Approaches established for these enzymes can now be extended to additional substrates and to drugs metabolized by enzymes that are similarly well characterized.

5.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4347-4357, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046861

RESUMO

Paeoniflorin, a representative pinane monoterpene glycoside, is the main active component and quality index of Paeoniae Radix Alba and Paeoniae Radix Rubra.The possible biosynthesis of paeoniflorin is as follows: GPP is derived from mevalonate(MVA) and/or 2-C-methyl-D-erythritol 4-phosphate(MEP) pathway(s) followed by the catalysis with terpene synthase, cytochrome P450(CYP450), UDP-glucuronosyltransferase(UGT), and acyltransferase(AT), respectively.This study aims to explore the genes rela-ted to the biosynthesis of paeoniflorin.To be specific, the cDNA libraries for flowers, leaves, and roots of Paeonia lactiflora were established and sequenced.A total of 30 609 open reading frames(ORFs) were yielded.Through functional annotation and expression analysis of all CYP450 genes in the transcriptome, 11 CYP450 genes belonging to CYP71 A and CYP71 D subfamilies and showing expression trend consistent with monoterpene synthase PlPIN that may be involved in paeoniflorin biosynthesis were screened out.Subsequently, 7 UGT genes and 9 AT genes demonstrating the expression trend consistent with PlPIN which were possibly involved in paeoniflorin biosynthesis were further screened by functional annotation analysis, full-length sequence analysis, expression analysis, and phylogeny analysis.This study provided a systematic screening method with smaller number of candidate genes, thus reducing the workload of functional gene verification.The result laid a foundation for analyzing the biosynthesis pathway of paeoniflorin and the formation mechanism.


Assuntos
Paeonia , Hidrocarbonetos Aromáticos com Pontes , Perfilação da Expressão Gênica , Glucosídeos/genética , Glucosídeos/metabolismo , Monoterpenos/metabolismo , Paeonia/genética
6.
Biol Pharm Bull ; 45(8): 1116-1123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908893

RESUMO

Flavones, which are distributed in a variety of plants and foods in nature, possess significant biological activities, including antitumor and anti-inflammatory effects, and are metabolized into glucuronides by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes in humans. In this study, apigenin, acacetin, and genkwanin, flavones having hydroxyl groups at C5, C7, and/or C4'positions were focused on, and the regioselective glucuronidation in human liver and intestinal microsomes was examined. Two glucuronides (namely, AP-7G and AP-4'G for apigenin, AC-5G and AC-7G for acacetin, and GE-5G and GE-4'G for genkwanin) were formed from each flavone by liver and intestinal microsomes, except for only GE-4'G formation from genkwanin by intestinal microsomes. The order of total glucuronidation activities was liver microsomes > intestinal microsomes for apigenin and acacetin, and liver microsomes < intestinal microsomes for genkwanin. The order of CLint values (x-intercept) based on v versus V/[S] plots for apigenin glucuronidation was AP-7G > AP-4'G in liver microsomes and AP-7G < AP-4'G in intestinal microsomes. The order of CLint values was AC-5G < AC-7G for acacetin and GE-5G < GE-4'G genkwanin glucuronidation in both liver and intestinal microsomes. This suggests that the abilities and roles of UGT enzymes in the glucuronidation of apigenin, acacetin, and genkwanin in humans differ depending on the chemical structure of flavones.


Assuntos
Apigenina , Flavonas , Microssomos , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Intestinos/metabolismo , Fígado/metabolismo , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo
7.
Drug Chem Toxicol ; 45(4): 1565-1569, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33187449

RESUMO

Bisphenol A (BPA) is an endocrine-disrupting chemical, and is predominantly metabolized into glucuronide in mammals. The present study was conducted in order to examine the hepatic and intestinal glucuronidation of BPA in humans and laboratory animals such as monkeys, dogs, rats, and mice in an in vitro system using microsomal fractions. Km, Vmax, and CLint values in human liver microsomes were 7.54 µM, 17.7 nmol/min/mg protein, and 2.36 mL/min/mg protein, respectively. CLint values in liver microsomes of monkey, dogs, rats, and mice were 1.5-, 2.4-, 1.7- and 8.2-fold that of humans, respectively. In intestinal microsomes, Km, Vmax, and CLint values in humans were 39.3 µM, 0.65 nmol/min/mg protein, and 0.02 mL/min/mg protein, respectively. The relative levels of CLint in monkey, dogs, rats, and mice to that of humans were 7.0-, 12-, 34-, and 29-fold, respectively. Although CLint values were higher in liver microsomes than in intestinal microsomes in all species, and marked species difference in the ratio of liver to intestinal microsomes was observed as follows: humans, 118; monkeys, 25; dogs, 23; rats, 5.9; mice, 33. These results suggest that the functional roles of UDP-glucuronosyltransferase (UGT) enzymes expressed in the liver and intestines in the metabolism of BPA extensively differ among humans, monkeys, dogs, rats, and mice.


Assuntos
Mucosa Intestinal , Microssomos , Animais , Animais de Laboratório , Compostos Benzidrílicos , Cães , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Fígado/metabolismo , Macaca fascicularis , Mamíferos , Camundongos , Microssomos/metabolismo , Microssomos Hepáticos , Fenóis , Ratos , Especificidade da Espécie
8.
Hum Genomics ; 15(1): 30, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034810

RESUMO

UDP-glucuronosyltransferases (UGTs) are the main phase II drug-metabolizing enzymes mediating the most extensive glucuronidation-binding reaction in the human body. The UGT1A family is involved in more than half of glucuronidation reactions. However, significant differences exist in the distribution of UGT1As in vivo and the expression of UGT1As among individuals, and these differences are related to the occurrence of disease and differences in metabolism. In addition to genetic polymorphisms, there is now interest in the contribution of epigenetics and noncoding RNAs (especially miRNAs) to this differential change. Epigenetics regulates UGT1As pretranscriptionally through DNA methylation and histone modification, and miRNAs are considered the key mechanism of posttranscriptional regulation of UGT1As. Both epigenetic inheritance and miRNAs are involved in the differences in sex expression and in vivo distribution of UGT1As. Moreover, epigenetic changes early in life have been shown to affect gene expression throughout life. Here, we review and summarize the current regulatory role of epigenetics in the UGT1A family and discuss the relationship among epigenetics and UGT1A-related diseases and treatment, with references for future research.


Assuntos
Epigênese Genética/genética , Glucuronosiltransferase/genética , Inativação Metabólica/genética , Glucuronosiltransferase/metabolismo , Humanos , MicroRNAs/genética , Família Multigênica/genética
9.
Front Pharmacol ; 12: 802539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095509

RESUMO

Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.

10.
J Pharm Sci ; 109(7): 2309-2320, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32294459

RESUMO

The pharma industry designs increasingly less cytochrome P450 dependent and more metabolically stable drugs, and consequently UGT-metabolism becomes more frequently involved. This study compares 2 glucuronidation RAF-scaling approaches, product formation and substrate depletion, regarding their potential for prediction of in vivo DDI and the relative contribution of UGT-mediated phase II reactions in an industrial setting. RAFs were developed for UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15 recombinant UGT isoforms and a large 150-donor pooled human liver microsome batch. The RAF-values ranged from small values of 0.06 (UGT1A3), over 0.24 and 0.48 (UGT1A9 and UGT1A4), to values around 1 (1.11 for UGT2B7, 1.14 for UGT1A1), and high RAFs of 4.8 (UGT1A6) and 6.57 (UGT2B15). Both approaches identified the same primarily involved isoforms (≥75% relative contribution) of 5 clinical reference compounds (raloxifene, haloperidol, laropiprant, telmisartan and naloxone), in concordance with reported in vitro (R2 = 0.65) and clinical results for UGT1A1, 1A3, 1A4, 1A9, 2B7 and 2B15. This study is distinctive in that it is reporting the glucuronide formation in addition to substrate depletion. The product formation approach proved more sensitive and enables UGT phenotyping of slowly metabolized drugs, additionally it allows identification of structurally different glucuronides.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Sistema Enzimático do Citocromo P-450 , Glucuronosiltransferase/metabolismo , Humanos , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas
11.
Food Chem Toxicol ; 131: 110542, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31163218

RESUMO

S-equol, an active metabolite of the soy isoflavone daidzein, is mainly metabolized into glucuronide(s) by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, S-equol glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis. CLint values for 7- and 4'-glucuronidation by liver microsomes were higher than those by intestinal microsomes in all species. CLint values for total glucuronidation (sum of 7- and 4'-glucuronidation) were rats (7.6) > monkeys (5.8) > mice (4.9) > dogs (2.8) > humans (1.0) for liver microsomes, and rats (9.6) > mice (2.8) > dogs (1.3) ≥ monkeys (1.2) > humans (1.0) for intestinal microsomes, respectively. Regarding regioselective glucuronidation by liver and intestinal microsomes, CLint values were 7-glucuronidation > 4'-glucuronidation for humans, monkeys, dogs, and mice, and 4'-glucuronidation > 7-glucuronidation for rats. These results suggest that the metabolic abilities of UGT enzymes toward S-equol in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice.


Assuntos
Equol/metabolismo , Glucuronídeos/biossíntese , Microssomos Hepáticos/metabolismo , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Cães , Equol/química , Glucuronosiltransferase/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Cinética , Macaca fascicularis , Camundongos , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Estereoisomerismo , Adulto Jovem
12.
J Pharm Sci ; 108(2): 1017-1026, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30244007

RESUMO

1-Aminobenzotriazole (ABT) has been widely used as a nonspecific mechanism-based inhibitor of cytochrome P450 (P450) enzymes. It is extensively used in preclinical studies to determine the relative contribution of oxidative metabolism mediated by P450 in vitro and in vivo. The aim of present study was to understand the translation of fraction metabolized by P450 in dog hepatocytes to in vivo using ABT, for canagliflozin, known to be cleared by P450-mediated oxidation and UDP-glucuronosyltransferases-mediated glucuronidation, and 3 drug discovery project compounds mainly cleared by hepatic metabolism. In a dog hepatocyte, intrinsic clearance assay with and without preincubation of ABT, 3 Lilly compounds exhibited a wide range of fraction metabolized by P450. Subsequent metabolite profiling in dog hepatocytes demonstrated a combination of metabolism by P450 and UDP-glucuronosyltransferases. In vivo, dogs were pretreated with 50 mg/kg ABT or vehicle at 2 h before intravenous administration of canagliflozin and Lilly compounds. The areas under the concentration-time curve (AUC) were compared for the ABT-pretreated and vehicle-pretreated groups. The measured AUCABT/AUCveh ratios were correlated to fraction of metabolism by P450 in dog hepatocytes, suggesting that in vitro ABT inhibition in hepatocytes is useful to rank order compounds for in vivo fraction of metabolism assessment.


Assuntos
Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães/metabolismo , Fígado/metabolismo , Triazóis/metabolismo , Animais , Canagliflozina/sangue , Canagliflozina/metabolismo , Inibidores das Enzimas do Citocromo P-450/sangue , Cães/sangue , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Fígado/citologia , Masculino , Oxirredução , Triazóis/sangue
13.
Biochem Pharmacol ; 155: 252-263, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30009768

RESUMO

Estrogen plays a pivotal role in the pathological development of breast cancer. Resveratrol has chemo-preventive effects against breast cancer, whereas, the mechanism of antitumor activities of resveratrol remains unanswered. In this study, we showed that estrogen homeostasis profile was disturbed in both breast cancer patients and in experimental breast cancer model rats, with carcinogenic catechol estrogens significantly accumulated in the mammary tissues. UDP-glucuronosyltransferase 1A8 (UGT1A8) is an important phase II drug-metabolizing enzymes which involved in the metabolism of catechol estrogens. Here we found that the mammary nuclear factor erythroid 2-related factor 2 (NRF2) - UGT1A8 signaling was down-regulated in breast cancer rats, whereas treatment with resveratrol could upregulate the expression of NRF2 and UGT1A8, accelerate metabolic elimination of catechol estrogens, inhibit estrogen-induced DNA damage and suppress the pathological development of breast cancer. In addition, luciferase reporter assay suggested that resveratrol activated the expression of UGT1A8 by up-regulating the transcriptional activity of NRF2. Small-interfering RNA-mediated silencing of NRF2 abolished resveratrol-mediated preventive effects indicated that the antitumor effect of resveratrol is based on NRF2-UGT1A8-estrogen metabolism axis. Taken together, we established the resveratrol regulating potential on estrogen homeostasis based on NRF2-UGT1A8 signaling pathway, and also provided a novel link between estrogen glucuronidation metabolism and breast cancer pathological development.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Glucuronosiltransferase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Resveratrol/uso terapêutico , Adulto , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Estrogênios/análise , Feminino , Glucuronosiltransferase/análise , Humanos , Fator 2 Relacionado a NF-E2/análise , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia , Espectrometria de Massas em Tandem/métodos
14.
Arch Toxicol ; 92(9): 2809-2817, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014295

RESUMO

Daidzein, one of the major soy isoflavones, has a number of beneficial bioactivities for human health. It is mainly metabolized into 7- and/or 4'-glucuronides by UDP-glucuronosyltransferase (UGT) enzymes in mammals, including humans. The present study was conducted to examine the regioselective glucuronidation of daidzein at the 7- and 4'-hydroxyl groups in the liver and intestinal microsomes of humans, monkeys, rats, and mice. Daidzein glucuronidation activities at substrate concentrations of 1.0-200 µM were assessed, and Eadie-Hofstee plots were constructed. The kinetics for 7- and 4'-glucuronidation in the liver microsomes fit the Michaelis-Menten model, except for an atypical model for 7-glucuronidation in rats and a biphasic model for 4'-glucuronidation in monkeys. These kinetics in the intestinal microsomes followed the Michaelis-Menten model, except for a biphasic model for 7-glucuronidation in mice. The CLint values for 7-glucuronidation were in the order of monkeys (49) ≫ rats (5.3) > humans (1.0) > mice (0.7) for liver microsomes, and rats (2.4) ≥ monkeys (2.2) > humans (1.0) ≥ mice (0.8) for intestinal microsomes. On the other hand, the CLint values for 4'-glucuronidation were in the order of monkeys (4.0) > mice (1.0) ≈ humans (1.0) > rats (0.4) for liver microsomes, and humans (1.0) ≫ monkeys (0.08) ≥ mice (0.07) > rats (0.05) for intestinal microsomes. These results demonstrated that the metabolic abilities of UGT enzymes toward daidzein in the liver and intestines markedly differed among humans, monkeys, rats, and mice, and suggest that species and regioselective differences are closely associated with the bioactivities of soy isoflavones.


Assuntos
Intestinos/efeitos dos fármacos , Isoflavonas/farmacocinética , Microssomos/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Glucuronosiltransferase/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Isoflavonas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Ratos Sprague-Dawley
15.
J Pharm Biomed Anal ; 154: 444-453, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29587224

RESUMO

Icaritin is one of the Epimedium products with various biological activities. In the present study, we developed a rapid, reliable and robust UHPLC-MS/MS method to simultaneously determine unconjugated icaritin and its multiple glucuronides (icaritin-3-glucuronide, icaritin-7-glucuronide and icaritin-3,7-diglucuronide) in microsomal incubation systems, and applied it to study icaritin regioselective glucuronidation in vitro. We identified the involvement of human UDP-glucuronosyltransferase (UGT) isoforms in icaritin metabolism and further studied the kinetic profiles of icaritin glucuronidation using pooled human liver microsomes (HLMs), pooled rat liver microsomes (RLMs), pooled human intestine microsomes (HIMs) and UGTs, respectively. We also evaluated regioselective glucuronidation of icaritin by UGT isoforms and conducted time-dependent experiment to elucidate the metabolic pathways for icaritin clearance. Catalytic efficiency of microsomes is determined according to rank orders of total intrinsic clearance (CLint): CLint,HLM (24.19 mL/mg/min) > CLint,RLM (13.15 mL/mg/min) > CLint,HIM (6.43 mL/mg/min). Besides, icaritin glucuronidation is mediated by multiple enzymes, with UGT1A1 the principal metabolizing enzyme (total CLint,UGT1A1 = 6.38 mL/mg/min). As for the regioselectivity, except for UGT1A8 and UGT2B7, most UGT isoforms exhibit preference for the position of 3-OH on icaritin structure. Moreover, time-dependent conversion from monoglucuronides to diglucuronide indicate that icaritin-3,7-diglucuronide may be the final metabolite from icaritin elimination.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/metabolismo , Glucuronídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Glucuronosiltransferase/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Cinética , Taxa de Depuração Metabólica/fisiologia , Redes e Vias Metabólicas/fisiologia , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo , Ratos
16.
Food Chem Toxicol ; 111: 417-422, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29198856

RESUMO

Naringenin, a flavanone found in citrus fruits, is mainly metabolized into glucuronide(s) by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the glucuronidation of naringenin in the liver and intestine microsomes of humans, monkeys, rats, and mice was examined. The kinetics of 7-glucuronidation in human liver and intestine microsomes followed the Michaelis-Menten model. Kinetics in mouse liver and intestine microsomes also followed the Michaelis-Menten model, whereas those in monkey and rat liver microsomes fit the biphasic model. Kinetics in monkey and rat intestine microsomes fit the Michaelis-Menten and substrate inhibition models, respectively. CLint values were mice > monkeys > rats > humans for liver microsomes, and mice > rats > monkeys > humans for intestine microsomes. In 4´-glucuronidation, activities in human liver microsomes and monkey liver and intestine microsomes were negligible or very low. Kinetics in rat and mouse liver microsomes followed the biphasic and Michaelis-Menten models, respectively. CLint values were rats > mice for liver microsomes, and rats > mice > humans for intestine microsomes. These results suggest that the metabolic abilities and regioselectivity of UGT enzymes toward naringenin in the liver and intestines generally differ between primates and rodents.


Assuntos
Flavanonas/metabolismo , Microssomos/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Macaca fascicularis , Camundongos , Ratos , Especificidade da Espécie
17.
Clin Exp Pharmacol Physiol ; 45(5): 437-443, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29272031

RESUMO

This retrospective study was performed to evaluate the association between the UGT2B7 tagSNPs (rs12233719, rs4356975, rs7435335 and rs7441774) and breast cancer in Chinese females. Blood samples were collected from 672 patients with breast cancer and 670 healthy controls for DNA extraction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyze UGT2B7 polymorphisms. Dual-luciferase reporter assays were further performed to investigate the regulatory function of UGT2B7 tagSNPs. The frequency of rs7441774 G allele in the breast cancer cases was statistically significantly higher than in the controls (0.412 vs 0.358, P = .006; odds ratio [OR] = 1.27, 95% CI = 1.08-1.48). After adjusting for conventional risk factors, individuals with the GG genotype had a higher breast cancer risk than those with the AA genotype (adjusted OR = 1.63, 95% CI = 1.18-2.26; P = .008). The GCGG haplotype of UGT2B7 was also associated with breast cancer (OR = 1.22, 95% CI = 1.04-1.45; P = .027). Meanwhile, the rs7441774 G allele could significantly decrease the transcriptional activity of the UGT2B7 gene. This study indicates that UGT2B7 polymorphisms may play a crucial role in the occurrence and development of breast cancer in the Han Chinese population.


Assuntos
Povo Asiático/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Glucuronosiltransferase/genética , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Pessoa de Meia-Idade
18.
Xenobiotica ; 48(10): 1021-1027, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28845725

RESUMO

1. Glucuronidation of amines has been shown to exhibit large species differences, where the activity is typically more pronounced in human than in many preclinical species such as rat, mouse, dog and monkey. The purpose of this work was to characterize the in vitro glucuronidation of GNE-924, a potent pan-PIM inhibitor, to form M1 using liver microsomes (LM) and intestinal microsomes (IM). 2. M1 formation kinetics varied highly across species and between liver and intestinal microsomes. In LM incubations, rat exhibited the highest rate of M1 formation (CLint,app) at 140 ± 10 µL/min/mg protein, which was approximately 30-fold higher than human. In IM incubations, mouse exhibited the highest CLint,app at 484 ± 40 µL/min/mg protein, which was >1000-fold higher than human. In addition, CLint,app in LM was markedly higher than IM in human and monkey. In contrast, CLint,app in IM was markedly higher than LM in dog and mouse. 3. Reaction phenotyping indicated that UGT1A1, UGT1A3, UGT1A9, UGT2B4 and the intestine-specific UGT1A10 contributed to the formation of M1. 4. This is one of the first reports showing that N-glucuronidation activity is significantly greater in multiple preclinical species than in humans, and suggests that extensive intestinal N-glucuronidation may limit the oral exposure of GNE-924.


Assuntos
Antivirais/química , Antivirais/farmacologia , Glucuronídeos/metabolismo , Indazóis/química , Vírus da Leucemia Murina de Moloney/efeitos dos fármacos , Piperazinas/química , Piperazinas/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Cães , Glucuronosiltransferase/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Cinética , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Piperazinas/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
19.
J Pharm Sci ; 106(8): 2152-2162, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28479355

RESUMO

The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Estrogênios/metabolismo , Glucuronosiltransferase/metabolismo , Animais , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação para Baixo , Estradiol/análise , Estradiol/metabolismo , Estrogênios/análise , Feminino , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/genética , Humanos , Células MCF-7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Arch Toxicol ; 91(11): 3543-3550, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28500425

RESUMO

4-tert-Octylphenol (4-tOP) is an endocrine-disrupting chemical. It is mainly metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in humans. The purpose of this study was to assess inter-individual variability in and the possible roles of UGT isoforms in hepatic 4-tOP glucuronidation in the humans. 4-tOP glucuronidation activities in the liver microsomes and recombinant UGTs of humans were assessed at broad substrate concentrations, and kinetics were analyzed. Correlation analyses between 4-tOP and diclofenac or 4-hydroxybiphenyl activities in pooled and individual human liver microsomes were also performed. Typical CLint values were 17.8 mL/min/mg protein for the low type, 25.2 mL/min/mg protein for the medium type, and 47.7 mL/min/mg protein for the high type. Among the recombinant UGTs (13 isoforms) examined, UGT2B7 and UGT2B15 were the most active of catalyzing 4-tOP glucuronidation. Although the K m values of UGT2B7 and UGT2B15 were similar (0.36 and 0.42 µM, respectively), the CLint value of UGT2B7 (6.83 mL/min/mg protein) >UGT2B15 (2.35 mL/min/mg protein). Strong correlations were observed between the glucuronidation activities of 4-tOP and diclofenac (a probe for UGT2B7) or 4-hydroxybiphenyl (a probe for UGT2B15) with 0.79-0.88 of Spearman correlation coefficient (r s) values. These findings demonstrate that 4-tOP glucuronidation in humans is mainly catalyzed by hepatic UGT2B7 and UGT2B15, and suggest that these UGT isoforms play important and characteristic roles in the detoxification of 4-tOP.


Assuntos
Glucuronosiltransferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fenóis/farmacocinética , Adolescente , Adulto , Idoso , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacocinética , Diclofenaco/farmacocinética , Disruptores Endócrinos/farmacocinética , Feminino , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA