Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Methods Enzymol ; 691: 29-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914450

RESUMO

DNA polymerases are important tools for biotechnology, synthetic biology, and chemical biology as they are routinely used to amplify and edit genetic information. However, natural polymerases do not recognize artificial genetic polymers (also known as xeno-nucleic acids or XNAs) with unique sugar-phosphate backbone structures. Directed evolution offers a possible solution to this problem by facilitating the discovery of engineered versions of natural polymerases that can copy genetic information back and forth between DNA and XNA. Here we report a directed evolution strategy for discovering polymerases that can synthesize threose nucleic acid (TNA) on DNA templates. The workflow involves library generation and expression in E. coli, high-throughput microfluidics-based screening of uniform water-in-oil droplets, plasmid recovery, secondary screening, and library regeneration. This technique is sufficiently general that it could be applied to a wide range of problems involving DNA modifying enzymes.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Escherichia coli/genética , Escherichia coli/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA/genética
2.
Bioorg Chem ; 141: 106921, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871392

RESUMO

Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Nucleosídeos/química , Glicóis/química , Nucleotídeos , Propilenoglicol
3.
Chem Res Chin Univ ; : 1-7, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35814030

RESUMO

Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.

4.
Biomolecules ; 10(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302546

RESUMO

Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.


Assuntos
Proteínas Arqueais/química , DNA Polimerase beta/química , DNA Arqueal/química , Hexosefosfatos/química , Nucleotídeos/química , RNA Arqueal/química , Thermococcus/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Arqueal/genética , DNA Arqueal/metabolismo , Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hexosefosfatos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/genética , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , RNA Arqueal/genética , RNA Arqueal/metabolismo , Especificidade por Substrato , Thermococcus/enzimologia
5.
Mol Biol Rep ; 47(10): 8113-8131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32990905

RESUMO

Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.


Assuntos
DNA/análise , Ácidos Nucleicos Peptídicos/química , RNA/análise , DNA/química , RNA/química
6.
Q Rev Biophys ; 53: e8, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32715992

RESUMO

DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA/genética , Ácidos Nucleicos/química , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Animais , Cristalografia por Raios X , DNA/química , Escherichia coli/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Biblioteca de Peptídeos , Filogenia , Polímeros/química , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade por Substrato , Thermus thermophilus/metabolismo
7.
Angew Chem Int Ed Engl ; 58(34): 11570-11572, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31210402

RESUMO

The term "xeno-nucleic acids", abbreviated XNA, has grown in popularity to the point that it has become a catch-all phrase for almost any unnatural nucleic acid, raising the question: what is XNA and how does it differ from chemically modified DNA?

8.
ACS Synth Biol ; 8(2): 282-286, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30629885

RESUMO

Ligases are a class of enzymes that catalyze the formation of phosphodiester bonds between an oligonucleotide donor with a 5' terminal phosphate and an oligonucleotide acceptor with a 3' terminal hydroxyl group. Here, we wished to explore the substrate specificity of naturally occurring DNA and RNA ligases to determine whether the molecular recognition of these enzymes is sufficiently general to synthesize alternative genetic polymers with backbone structures that are distinct from those found in nature. We chose threose nucleic acid (TNA) as a model system, as TNA is known to be biologically stable and capable of undergoing Darwinian evolution. Enzyme screening and reaction optimization identified several ligases that can recognize TNA as either the donor or acceptor strand with DNA. Less discrimination occurs on the acceptor strand indicating that the determinants of substrate specificity depend primarily on the composition of the donor strand. Remarkably, T3 and T7 ligases were able to join TNA homopolymers together, which is surprising given that the TNA backbone is one atom shorter than that of DNA. In this reaction, the base composition of the ligation junction strongly favors the formation of A-T and A-G linkages. We suggest that these results will enable the assembly of TNA oligonucleotides of lengths beyond what is currently possible by solid-phase synthesis and provide a starting point for further optimization by directed evolution.


Assuntos
DNA/metabolismo , Ligases/metabolismo , Ácidos Nucleicos/metabolismo , DNA/química , Ácidos Nucleicos/química
9.
ACS Synth Biol ; 7(6): 1565-1572, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746092

RESUMO

We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.


Assuntos
Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos de Timina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Decitabina/química , Decitabina/metabolismo , Nucleotídeos de Desoxicitosina/genética , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/genética , Nucleotídeos de Desoxiguanina/metabolismo , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Microalgas/genética , Microrganismos Geneticamente Modificados , Taxa de Mutação , Peptídeo Hidrolases/genética , Timidina Quinase/genética , Timidilato Sintase/genética , Nucleotídeos de Timina/genética
10.
Curr Protoc Nucleic Acid Chem ; 69: 4.75.1-4.75.20, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628207

RESUMO

Polymerase engineering is making it possible to synthesize xeno-nucleic acid polymers (XNAs) with diverse backbone structures and chemical functionality. The ability to copy genetic information back and forth between DNA and XNA has led to a new field of science known as synthetic genetics, which aims to study the genetic concepts of heredity and evolution in artificial genetic polymers. Since many of the polymerases needed to synthesize XNA polymers are not available commercially, researchers must express and purify these enzymes as recombinant proteins from E. coli. This unit details the steps needed to express, purify, and evaluate the activity of engineered polymerases with altered substrate recognition properties. The protocol requires 6 days to complete and will produce ∼20 mg of pure, nuclease-free polymerase per liter of E. coli bacterial culture. © 2017 by John Wiley & Sons, Inc.


Assuntos
DNA Polimerase Dirigida por DNA/química , Archaea/enzimologia , Linhagem Celular , Cromatografia Líquida , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Vetores Genéticos , Especificidade por Substrato
11.
Artif DNA PNA XNA ; 4(2): 39-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24044051

RESUMO

Recently, we achieved the first in vitro selection of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) aptamers. High-affinity thrombin-binding aptamers (TBAs) were obtained from DNA-based libraries containing 2'-O,4'-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) in the 5'-primer region, using the method of capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX). Furthermore, a similar selection protocol could provide TBAs that contain B/L nucleotides in both primer and random regions. We review technical challenges involved in the generation of various BNA libraries using analogs of B/L nucleoside-5'-triphosphate and polymerase variants and also discuss applications of these libraries to the selection of BNA (LNA) aptamers, as well as future prospects for their therapeutic and diagnostic uses.


Assuntos
Aptâmeros de Nucleotídeos/genética , Oligonucleotídeos/genética , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Terapia Genética/métodos , Humanos , Sequências Repetidas Invertidas , Oligonucleotídeos/química , Técnica de Seleção de Aptâmeros
12.
Theranostics ; 3(6): 395-408, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23781286

RESUMO

Molecular beacons (MBs) of DNA and RNA have aroused increasing interest because they allow a continuous readout, excellent spatial and temporal resolution to observe in real time. This kind of dual-labeled oligonucleotide probes can differentiate between bound and unbound DNA/RNA in homogenous hybridization with a high signal-to-background ratio in living cells. This review briefly summarizes the different unnatural sugar backbones of oligonucleotides combined with fluorophores that have been employed to sense DNA/RNA. With different probes, we epitomize the fundamental understanding of driving forces and these recognition processes. Moreover, we will introduce a few novel and attractive emerging applications and discuss their advantages and disadvantages. We also highlight several perspective probes in the application of cancer therapeutics.


Assuntos
Hibridização de Ácido Nucleico/métodos , Ácidos Nucleicos/análise , Sondas de Oligonucleotídeos/metabolismo , Xenobióticos/análise , Corantes Fluorescentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA