Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Acta Pharmacol Sin ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223367

RESUMO

PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 µM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.

2.
R Soc Open Sci ; 11(6): 240080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39092141

RESUMO

The Zα fold specifically binds to both Z-DNA and Z-RNA, left-handed nucleic acid structures that form under physiological conditions and are encoded by flipons. I trace the Zα fold back to unicellular organisms representing all three domains of life and to the realm of giant nucleocytoplasmic DNA viruses (NCVs). The canonical Zα fold is present in the earliest known holozoan unicellular symbiont Capsaspora owczarzaki and persists in vertebrates and some invertebrates, but not in plants or fungi. In metazoans, starting with porifera, Zα is incorporated into the double-stranded RNA editing enzyme ADAR and reflects an early symbiont relationship with NCV. In vertebrates, Zα is also present in ZBP1 and PKZ proteins that recognize host-derived Z-RNAs to defend against modern-day viruses. A related Zα fold, also likely to bind Z-DNA, is present in proteins thought to modulate gene expression, including a subset of prokaryote arsR proteins and the p15 (PC4) family present in algae. Other Zα variants that probably play a more general role in the reinitiation of transcription include the archaeal and human transcription factor E and the human RNA polymerase 3 subunit C proteins. The roles in immunity and transcription underlie the natural selection of flipons.

3.
Front Microbiol ; 15: 1419615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952452

RESUMO

African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1ß induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.

4.
Int Immunopharmacol ; 137: 112373, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852523

RESUMO

Although penehyclidine hydrochloride (PHC) has been identified to alleviate myocardial injury induced by ischemia/reperfusion (I/R), the regulatory molecules and related mechanisms are unknown. In this study, bioinformatics, molecular biology, and biochemistry methods were used to explore the molecular mechanisms and targets of PHC. In the myocardial ischemia-reperfusion injury (MIRI)-induced rat model, PHC pretreatment significantly improved cardiac function (p < 0.01). Multiple differentially expressed genes, including Z-DNA binding protein 1 (ZBP1), were identified through mRNA sequencing analysis of myocardial ischemic penumbra tissue in MIRI rats. The transduction of the ZBP1 adenovirus vector (Ad-Zbp1) in PHC-pretreated rats exhibited a reversible augmentation in myocardial infarct size (p < 0.01), pronounced pathological damage to the myocardial tissue, as well as a significant elevation of serum myocardial enzymes (p < 0.05). The interaction among ZBP1, fas-associating via death domain (FADD), and receptor-interacting serine/threonine-protein kinase 3 (RIPK3) leads to a remarkable up-regulation of cleaved-Caspase-1 (Cl-Casp-1), N-terminal gasdermin D (N-GSDMD), phospho-mixed lineage kinase domain-like Ser358 (p-MLKLS358), and other regulatory proteins, thereby triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) in cardiomyocytes of MIRI rats. Moreover, the transduction of Ad-Zbp1 in the oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced H9c2 cell model also dramatically augmented the number of cell deaths. However, the intervention of PHC considerably enhanced cell viability (p < 0.01), effectively mitigated the release of myocardial enzymes (p < 0.05), and markedly attenuated the expression levels of PANoptosis regulatory proteins through restraint of ZBP1 expression. Therefore, the therapeutic efficacy of PHC in improving MIRI might be attributed to targeting ZBP1-mediated PANoptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Quinuclidinas , Ratos Sprague-Dawley , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Masculino , Ratos , Quinuclidinas/uso terapêutico , Quinuclidinas/farmacologia , Necroptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem Celular , Apoptose/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
5.
Mob DNA ; 15(1): 14, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937837

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with an unpredictable course of recurrent exacerbations alternating with more stable disease. SLE is characterized by broad immune activation and autoantibodies against double-stranded DNA and numerous proteins that exist in cells as aggregates with nucleic acids, such as Ro60, MOV10, and the L1 retrotransposon-encoded ORF1p. RESULTS: Here we report that these 3 proteins are co-expressed and co-localized in a subset of SLE granulocytes and are concentrated in cytosolic dots that also contain DNA: RNA heteroduplexes and the DNA sensor ZBP1, but not cGAS. The DNA: RNA heteroduplexes vanished from the neutrophils when they were treated with a selective inhibitor of the L1 reverse transcriptase. We also report that ORF1p granules escape neutrophils during the extrusion of neutrophil extracellular traps (NETs) and, to a lesser degree, from neutrophils dying by pyroptosis, but not apoptosis. CONCLUSIONS: These results bring new insights into the composition of ORF1p granules in SLE neutrophils and may explain, in part, why proteins in these granules become targeted by autoantibodies in this disease.

6.
Adv Exp Med Biol ; 1451: 125-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801575

RESUMO

Poxviruses are notorious for having acquired/evolved numerous genes to counteract host innate immunity. Chordopoxviruses have acquired/evolved at least three different inhibitors of host necroptotic death: E3, which blocks ZBP1-dependent necroptotic cell death, and vIRD and vMLKL that inhibit necroptosis downstream of initial cell death signaling. While this suggests the importance of the necroptotic cell death pathway in inhibiting chordopoxvirus replication, several chordopoxviruses have lost one or more of these inhibitory functions. Monkeypox/mpox virus (MPXV) has lost a portion of the N-terminus of its E3 homologue. The N-terminus of the vaccinia virus E3 homologue serves to inhibit activation of the interferon-inducible antiviral protein, ZBP1. This likely makes MPXV unique among the orthopoxviruses in being sensitive to interferon (IFN) treatment in many mammals, including humans, which encode a complete necroptotic cell death pathway. Thus, IFN sensitivity may be the Achille's Heel for viruses like MPXV that cannot fully inhibit IFN-inducible, ZBP1-dependent antiviral pathways.


Assuntos
Interferon Tipo I , Proteínas Virais , Humanos , Animais , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Monkeypox virus/efeitos dos fármacos , Monkeypox virus/fisiologia , Monkeypox virus/genética , Imunidade Inata , Necroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mpox/virologia
7.
Adv Mater ; 36(29): e2313991, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692575

RESUMO

DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered. Thereout, a radiosensitization strategy focused on inducing Z-DNA conformation, utilizing CBL@HfO2 nanocapsules loaded with a Z-DNA inducer CBL0137, is proposed. A hollow mesoporous HfO2 (HM-HfO2) acts as a delivery and an energy depositor to promote Z-DNA breakage. The nanocapsule permits the smart DSBs accelerator that triggers its radiosensitization with irradiation stimulation. Impressively, the CBL@HfO2 facilitates the B-Z DNA conformational transition, augmenting DSBs about threefold stronger than irradiation alone, generating significant tumor suppression with a 30% cure rate. The approach enables DSBs augmentation by improving the inherent radiosensitivity of DNA. As such, it opens up an era of Z-DNA conformation manipulation in radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Forma Z , Conformação de Ácido Nucleico , DNA Forma Z/química , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Animais , Camundongos , Nanocápsulas/química , Linhagem Celular Tumoral , Tolerância a Radiação , Radiossensibilizantes/química , Neoplasias/radioterapia
8.
Int J Biol Macromol ; 266(Pt 1): 131238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554916

RESUMO

Zeta potential is commonly referred as surface charge density and is a key factor in modulating the structural and functional properties of nucleic acids. Although the negative charge density of B-DNA is well understood, there is no prior description of the zeta potential measurement of Z-DNA. In this study, for the first time we discover the zeta potential difference between B-DNA and lanthanum chloride-induced Z-DNA. A series of linear repeat i.e. (CG)n and (GC)n DNA as well as branched DNA (bDNA) structures was used for the B-to-Z DNA transition. Herein, the positive zeta potential of Z-DNA has been demonstrated as a powerful tool to discriminate between B-form and Z-form of DNA. The generality of the approach has been validated both in linear and bDNA nanostructures. Thus, we suggest zeta potential can be used as an ideal signature for the left-handed Z-DNA.


Assuntos
DNA de Forma B , DNA Forma Z , Conformação de Ácido Nucleico , DNA Forma Z/química , DNA de Forma B/química , Lantânio/química , DNA/química , Nanoestruturas/química
9.
Cytokine Growth Factor Rev ; 77: 15-29, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548490

RESUMO

Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.


Assuntos
Morte Celular , Imunidade Inata , Inflamação , Proteínas de Ligação a RNA , Humanos , Animais , Inflamação/imunologia , Morte Celular/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Necroptose/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , NF-kappa B/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Apoptose
10.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473808

RESUMO

Antibodies to DNA are a diverse set of antibodies that bind sites on DNA, a polymeric macromolecule that displays various conformations. In a previous study, we showed that sera of normal healthy subjects (NHS) contain IgG antibodies to Z-DNA, a left-handed helix with a zig-zig backbone. Recent studies have demonstrated the presence of Z-DNA in bacterial biofilms, suggesting a source of this conformation to induce responses. To characterize further antibodies to Z-DNA, we used an ELISA assay with brominated poly(dGdC) as a source of Z-DNA and determined the isotype of these antibodies and their binding properties. Results of these studies indicate that NHS sera contain IgM and IgA as well as IgG anti-Z-DNA antibodies. As shown by the effects of ionic strength in association and dissociation assays, the anti-Z-DNA antibodies bind primarily by electrostatic interactions; this type of binding differs from that of induced anti-Z-DNA antibodies from immunized animals which bind by non-ionic interactions. Furthermore, urea caused dissociation of NHS anti-Z-DNA at molar concentrations much lower than those for the induced antibodies. These studies also showed IgA anti-Z-DNA antibodies in fecal water. Together, these studies demonstrate that antibodies to Z-DNA occur commonly in normal immunity and may arise as a response to Z-DNA of bacterial origin.


Assuntos
DNA Forma Z , Animais , Humanos , Voluntários Saudáveis , Anticorpos Antinucleares , Imunoglobulina G , Imunoglobulina A
11.
Virus Res ; 343: 199342, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408646

RESUMO

African swine fever virus is known to suppress type-I interferon (IFN) responses. The main objective of this study was to screen early-expressed viral genes for their ability to suppress IFN production. Out of 16 early genes examined, I73R exhibited robust suppression of cGAS-STING-induced IFN-ß promoter activities, impeding the function of both IRF3 and NF-κB transcription factors. As a result, I73R obstructed IRF3 nuclear translocation following the treatment of cells with poly(dA:dT), a strong inducer of the cGAS-STING signaling pathway. Although the I73R protein exhibits structural homology with the Zα domain binding to the left-handed helical form of DNA known as Z-DNA, its ability to suppress cGAS-STING induction of IFN-ß was independent of Z-DNA binding activity. Instead, the α3 and ß1 domains of I73R played a significant role in suppressing cGAS-STING induction of IFN-ß. These findings offer insights into the protein's functions and support its role as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , DNA Forma Z , Interferon Tipo I , Animais , Suínos , Vírus da Febre Suína Africana/genética , Interferon beta/genética , Interferon beta/metabolismo , Transdução de Sinais/genética , Imunidade Inata/genética , DNA Forma Z/metabolismo , Proteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética
12.
Ann Hepatol ; 29(4): 101475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38331384

RESUMO

INTRODUCTION AND OBJECTIVES: Acute liver injury (ALI) is characterized by massive hepatocyte death with high mortality and poor prognosis. Hepatocyte pyroptosis plays a key role in the physiopathological processes of ALI, which can damage mitochondria and release NLRP3 inflammasome particles, causing systemic inflammatory responses. Z-DNA Binding Protein 1 (ZBP1) is a sensor that induces cell death. Here, we investigated whether ZBP1 participates in hepatocyte pyroptosis and explored the possible pathogenesis of ALI. MATERIALS AND METHODS: Hepatocyte pyrotosis was induced with lipopolysaccharide (LPS) and nigericin (Nig), and the expression of Zbp1 (ZBP1) was examined by western blot analysis and RT-qPCR. Further, we transfected AML-12 (LO2 and HepG2) cell lines with Zbp1 (ZBP1) siRNA. After ZBP1 was silenced, LDH release and flow cytometry were used to measure the cell death; Western blot analysis and RT-qPCR were used to detect the marker of NLRP3 inflammasome activation and pyroptosis. We also detected the expression of mitochondrial linear rupture marker phosphoglycerate mutase family member 5 (PGAM5) using western blot analysis and reactive oxygen species (ROS) using the DCFH-DA method. RESULTS: The expression of ZBP1 was up-regulated in LPS/Nig-induced hepatocytes. Si-Zbp1 (Si-ZBP1) inhibited NLRP3 inflammasome activation and pyroptosis in LPS/Nig-induced hepatocytes. Moreover, ZBP1 silencing inhibited the expression of PGAM5 by reducing ROS production. CONCLUSIONS: ZBP1 promotes hepatocellular pyroptosis by modulating mitochondrial damage, which facilitates the extracellular release of ROS.


Assuntos
Hepatócitos , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Espécies Reativas de Oxigênio , Animais , Humanos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Nigericina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfoproteínas Fosfatases , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais
13.
Sci Rep ; 14(1): 4723, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413664

RESUMO

Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a critical role in the regulation of gene expression. Although TEs can generate Z-DNA and miRNAs can bind to Z-DNA, how these factors affect gene transcription has yet to be elucidated. Here, we identified potential Z-DNA forming sequence (ZFS), including TE-derived ZFS, in the promoter of prostaglandin reductase 1 (PTGR1) by data analysis. The transcriptional activity of these ZFS in PTGR1 was confirmed using dual-luciferase reporter assays. In addition, we discovered a novel ZFS-binding miRNA (miR-6867-5p) that suppressed PTGR1 expression by targeting to ZFS. In conclusion, these findings suggest that ZFS, including TE-derived ZFS, can regulate PTGR1 gene expression and that miR-6867-5p can suppress PTGR1 by interacting with ZFS.


Assuntos
DNA Forma Z , MicroRNAs , Humanos , Elementos de DNA Transponíveis/genética , Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353723

RESUMO

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Assuntos
Carbazóis , DNA Forma Z , Neoplasias , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Apoptose , Piroptose
15.
Toxicol Appl Pharmacol ; 482: 116765, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995810

RESUMO

CBL0137, a promising small molecular anti-cancer drug candidate, has been found to effectively induce apoptosis via activating p53 and suppressing nuclear factor-kappa B (NF-κB). However, it is still not clear whether CBL0137 can induce necroptosis in liver cancer; and if so, what is the underlying molecular mechanism. Here we found that CBL0137 could significantly induce left-handed double helix structure Z-DNA formation in HepG2 cells as shown by Z-DNA specific antibody assay, which was further confirmed by observing the expression of Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1). Interestingly, we found that caspase inhibition significantly promoted CBL0137-induced necroptosis, which was further supported with the increase of the late apoptosis and necrosis assessed by the flow cytometry. Furthermore, we found that CBL0137 can also induce the expression of the three necroptosis-related proteins: receptor interacting serine/threonine kinase 1 (RIPK1), receptor interacting serine/threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL). Taken together, it was assumed that CBL0137-indued necroptosis in liver cells was due to induction of Z-DNA and ZBP1, which activated RIPK1/RIPK3/MLKL pathway. This represents the first report on the induction of the Z-DNA-mediated necroptosis by CBL0137 in the liver cancer cells, which should provide new perspectives for CBL0137 treatment of liver cancer.


Assuntos
Antineoplásicos , Carbazóis , DNA Forma Z , Neoplasias Hepáticas , Humanos , Proteínas de Transporte/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Apoptose , Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Serina
16.
Biophys Rev ; 15(5): 1053-1078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974981

RESUMO

Under different conditions, the DNA double helix can take different geometric forms. Of the large number of its conformations, in addition to the "canonical" B form, the A, C, and Z forms are widely known, and the D, Hoogsteen, and X forms are less known. DNA locally takes the A, C, and Z forms in the cell, in complexes with proteins. We compare different methods for detecting non-canonical DNA conformations: X-ray, IR, and Raman spectroscopy, linear and circular dichroism in both the infrared and ultraviolet regions, as well as NMR (measurement of chemical shifts and their anisotropy, scalar and residual dipolar couplings and inter-proton distances from NOESY (nuclear Overhauser effect spectroscopy) data). We discuss the difficulties in applying these methods, the problems of theoretical interpretation of the experimental results, and the prospects for reliable identification of non-canonical DNA conformations.

17.
Immunity ; 56(11): 2508-2522.e6, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37848037

RESUMO

Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) synthase (cGAS) is a universal double-stranded DNA (dsDNA) sensor that recognizes foreign and self-DNA in the cytoplasm and initiates innate immune responses and has been implicated in various infectious and non-infectious contexts. cGAS binds to the backbone of dsDNA and generates the second messenger, cGAMP, which activates the stimulator of interferon genes (STING). Here, we show that the endogenous polyamines spermine and spermidine attenuated cGAS activity and innate immune responses. Mechanistically, spermine and spermidine induced the transition of B-form DNA to Z-form DNA (Z-DNA), thereby decreasing its binding affinity with cGAS. Spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme in polyamine catabolism that decreases the cellular concentrations of spermine and spermidine, enhanced cGAS activation by inhibiting cellular Z-DNA accumulation; SAT1 deficiency promoted herpes simplex virus 1 (HSV-1) replication in vivo. The results indicate that spermine and spermidine induce dsDNA to adopt the Z-form conformation and that SAT1-mediated polyamine metabolism orchestrates cGAS activity.


Assuntos
DNA de Forma B , DNA Forma Z , Espermina/metabolismo , Espermidina/metabolismo , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Poliaminas/metabolismo , Imunidade Inata/genética
18.
Clin Immunol ; 255: 109763, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673226

RESUMO

To explore the antibody response to Z-DNA, a DNA conformation with a zig-zag structure, blood of patients with systemic lupus erythematosus (SLE) and otherwise healthy individuals (NHS) were assayed by ELISA using brominated poly(dGdC), a synthetic Z-DNA antigen. These studies showed that SLE patients commonly express antibodies to Z-DNA; NHS also had binding in this assay. In SLE blood, levels of antibodies to Z-DNA were related to those to B-DNA using calf thymus DNA as a source of B-DNA; cross-reactivity was demonstrated by adsorption experiments using DNA cellulose. As shown by dissociation assays, antibody binding of SLE anti-Z-DNA is sensitive to the effects of ionic strength, suggesting electrostatic binding. Since Z-DNA structure can be found in bacterial DNA as well as bacterial biofilms, these findings suggest that, in SLE, anti-DNA antibody responses can result from stimulation by DNA of bacterial origin, with cross-reactivity leading to autoreactivity.

19.
Trends Endocrinol Metab ; 34(11): 688-690, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673764

RESUMO

Cytoplasmic mitochondrial DNA (mtDNA) can trigger the interferon response to promote disease progression, but mtDNA sensing mechanisms remain elusive. Lei et al. have shown that Z-DNA binding protein1 (ZBP1) cooperates with cyclic GMP-AMP synthase (cGAS) to sense Z-form mtDNA and transmit mtDNA stress signals to promote diseases such as cardiotoxicity, providing an important piece of the mtDNA stress landscape.

20.
J Biol Chem ; 299(9): 105140, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544644

RESUMO

The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.


Assuntos
DNA , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA , Transcrição Gênica , Animais , DNA/química , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Forma Z/química , DNA Forma Z/genética , DNA Forma Z/metabolismo , Epigênese Genética , Genoma/genética , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA