RESUMO
The root hexane extract of Ardisia crispa (ACRH), which belongs to the Primulaceae family, has been reported to possess anti-inflammatory, chemopreventive, anti-arthritic, and antiangiogenic activities. In this study, we isolated a p-benzoquinone derivative, 2-methoxy-6-undecyl-1,4-benzoquinone (AC2), from ACRH and investigated its potential antiangiogenic activity in human umbilical vein endothelial cells (HUVECs) and zebrafish embryo models. Prior to this study, AC2 was characterized using 1H NMR spectroscopy and MS. AC2 significantly suppressed HUVEC proliferation in a time-independent manner, with an IC50 value of 1.35 ± 0.05, 1.15 ± 0.02, and 1.00 ± 0.01 µg/mL at 24, 48, and 72 h, respectively. AC2 also induced apoptosis in HUVECs and significantly suppressed their migration, invasion, and tube formation in a concentration-dependent manner. Additionally, AC2 significantly attenuated most of the analyzed protein markers, including pro-MMP-2, VEGF-C, VEGF-D, angiopoietin-2, endothelin-1, fibroblast growth factor (FGF)-1, FGF-2, follistatin, heparin-binding epidermal growth factor-like growth factor (HB-EGF), and hepatocyte growth factor (HGF) at all tested concentrations. Furthermore, AC2 significantly inhibited zebrafish embryo intersegmental vessels (ISVs), confirming its antiangiogenic role. In conclusion, AC2 exhibits a potential anti-angiogenic effect by suppressing several proangiogenic and growth factors. Further studies are needed to investigate their effects on other excessive angiogenic diseases.
RESUMO
Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.
Assuntos
Triatoma , Animais , Saliva , Muramidase , Comportamento Alimentar , Glândulas SalivaresRESUMO
Cassia siamea is a nonedible legume belonging to Fabaceae. The seed of C. siamea contains ~16% of protein. The study reports the biochemical characterization of purified novel serine protease inhibitor from seeds of C. siamea, aimed with assessing the anti-inflammatory activity. The seed extract was subjected to ammonium sulfate precipitation followed by fast protein liquid chromatography (FPLC)-anion exchange chromatography and affinity-chromatography to obtain a relative pure protease inhibitor. Thirty-fivefold purification with the specific activity of 250 U/mg of trypsin inhibitory unit was obtained. The characterization of protease inhibitor for optimum temperature, pH, and metal ions were measured using N-α-benzoyl-DL-arginine-p-nitroanilide (BAPNA) assay and casein zymogram. The C. siamea trypsin inhibitor (CsTI) has a relative molecular mass of 25.540 kDa. Purified CsTI and Dolichos biflorus were tested for anti-inflammatory efficacy against A549 and RAW264.7 cell lines. The inhibitory activity of both purified inhibitors are comparable and are potent toward anti-inflammatory activity. The purified inhibitor shows to be a promising candidate as anti-inflammatory agent by targeting the serine proteases.
Assuntos
Cassia , Dolichos , Dolichos/química , Dolichos/metabolismo , Cassia/metabolismo , Inibidores de Serina Proteinase/farmacologia , Tripsina/química , Tripsina/metabolismo , Inibidores Enzimáticos , Concentração de Íons de HidrogênioRESUMO
This experiment aimed to explore the zymogram of endo-xylanase (EX) and debranching enzymes (arabinofuranosidase [EA] and ferulic acid esterase [EF]) supplemented in the corn−soybean meal-based diet of broilers. An in vitro simulated gastrointestinal digestion model was adopted. According to single-factor, completely random design, the optimal supplemental levels of individual carbohydrase were determined by reducing sugars (RS) and in vitro dry matter digestibility (IVDMD). Response surface method (RSM) was used to predict the proper compound ratio of three carbohydrases. Results showed that shifts were different for feedstuffs such as corn−soybean meal−distillers dried grains with solubles, corn hull, and wheat bran, revealing that the net increase of RS or IVDMD distinctly dropped when degrading corn and related by-products by EX (p < 0.05). There was a significant quadratic relationship between the above response metrics and addition levels of each enzyme (p < 0.05). The determined dosage was 54 U/g EX, 5.0 U/g EA, and 0.4 U/g of EF, respectively. The optimistic zymogram of carbohydrases in corn basal substrates was judged by the IVDMD screening (R2 = 0.9089, p < 0.001). Conclusively, the in vitro assay and RSM were convenient and rapid methods for the optimization of xylan-degrading zymogram, and also testified asthenic hydrolysis of corn arabinoxylan by EX, thus highlighting the synergistic combinations with debranching enzymes.
RESUMO
The processing of shellfishery industrial wastes is gaining much interest in recent times due to the presence of valuable components. Chitin is one of the valuable components and is insoluble in most common solvents including water. In this study, a novel gram-positive bacterial strain capable of solubilizing chitin was screened from a prawn shell dumping yard. The chitinolytic activity of the isolated strain was observed through the zone of hydrolysis plate assay. The hyper-producing isolate was identified as Bacillus velezensis through the 16S rRNA sequencing technique. The structural and morphological characterization of raw and colloidal chitin preparation was carried out using FTIR, XRD, and SEM analysis. The residual protein and mineral content, degree of polymerization, and degree of acetylation were reported for both raw and colloidal chitin preparations. There was a linear increase in the chitinase activity with an increase in the colloidal chitin concentration. The maximum activity of chitinase was observed as 38.98 U/mL for the initial colloidal chitin concentration of 1.5%. Supplement of additional carbon sources, viz., glucose and maltose, did not improve the production of chitinase and resulted in a diauxic growth pattern. The maximum chitinase activity was observed to be 33.10 and 30.28 U/mL in the colloidal chitin-containing medium with and without glucose as a secondary carbon source, respectively. Interestingly, the addition of complex nitrogen sources has increased the production of chitinase. A 1.95- and 2.14-fold increase in the enzyme activity was observed with peptone and yeast extract, respectively. The chitinase was confirmed using SDS-PAGE, native PAGE, and zymograms. The optimum pH and temperature for chitinase enzyme activity were found to be 7.0 and 44 °C, respectively.
Assuntos
Quitinases , Quitinases/metabolismo , Quitina/metabolismo , RNA Ribossômico 16S , Concentração de Íons de Hidrogênio , Carbono/metabolismo , GlucoseRESUMO
OBJECTIVE: The degradation activity of two bacteriophages UPMK_1 and UPMK_2 against methicillin-resistant Staphylococcus aureus phages were examined using gel zymography. METHODS: The analysis was done using BLASTP to detect peptides catalytic domains. Many peptides that are related to several phage proteins were revealed. RESULTS: UPMK_1 and UPMK_2 custom sequence database were used for peptide identification. The biofilm-degrading proteins in the bacteriophage UPMK_2 revealed the same lytic activity towards polysaccharide intercellular adhesin-dependent and independent of Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers in comparison to UPMK_1, which had lytic activity restricted solely to its host. CONCLUSION: Both bacteriophage enzymes were involved in MRSA biofilm degradation during phage infection and they have promising enzybiotics properties against MRSA biofilm formation.
Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos , Bacteriófagos/genética , Biofilmes , ProteômicaRESUMO
BACKGROUND: The aim of this study was to investigate the value of electrocardiograms (ECGs) and serological examinations in the differential diagnosis of acute pulmonary embolism (APE) and acute non-ST elevation myocardial infarction (NSTEMI) in order to reduce the rate of clinical misdiagnosis. METHODS: The clinical data of 37 patients with APE and 103 patients with NSTEMI admitted to our hospital were retrospectively analyzed. The differences in the clinical manifestations, ECGs, myocardial zymograms, D-dimers, and troponin (cTn) of the two groups were compared. RESULTS: In the patients with APE, the main symptom-found in 25 cases (67.56%)-was dyspnea, while in the patients with NSTEMI, the main symptom-found in 52 cases (50.49%)-was chest tightness. The incidences of sinus tachycardia and SI QIII TIII in the group of patients with APE were higher than in the group of patients with NSTEMI, and the difference was statistically significant (p < .05). There was no statistical significance in the difference of aspartate aminotransferase and lactate dehydrogenase (LDH) in the two groups (p > .05), although there was a statistically significant difference of creatine kinase (CK) and the creatine kinase isoenzyme-MB (CK-MB) in the two groups (p < .05). The levels of D-dimers and cTn were increased in both groups, but the level of D-dimers in the group of patients with APE was higher than that in the group of patients with NSTEMI. CONCLUSION: With the occurrence of clinical manifestations like dyspnea, chest tightness, chest pain, and palpitation of unknown causes, the possibility of APE and NSTEMI should be considered.
Assuntos
Infarto Miocárdico de Parede Anterior , Infarto do Miocárdio sem Supradesnível do Segmento ST , Embolia Pulmonar , Infarto do Miocárdio com Supradesnível do Segmento ST , Doença Aguda , Arritmias Cardíacas , Biomarcadores , Creatina Quinase , Creatina Quinase Forma MB , Dispneia , Eletrocardiografia , Humanos , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Embolia Pulmonar/diagnóstico , Estudos RetrospectivosRESUMO
Bioinformatics analysis of the complete transcriptome of Fasciola hepatica, identified a total of ten putative carboxylesterase transcripts, including a 3146 bp mRNA transcript coding a 2205 bp open reading frame that translates into a protein of 735 amino acids, resulting in a predicted protein mass of 83.5 kDa and a putative carboxylesterase B enzyme. The gene coding for this enzyme was found in two reported F. hepatica complete genomes stretching 23,230 bp, containing two exons of 1282 and 1864 bp, respectively, as well as a 20,084 bp intron between the exons. The enzymatic activity was experimentally assayed on F. hepatica protein extracts by SDS-PAGE zymograms using synthetic chromogenic substrates, confirming both the theoretical molecular weight and carboxylesterase enzymatic activity. Further bioinformatics predicted that this enzyme is an integral component of the cellular membrane that should be active as a 167 kDa homodimer complex and polyacrylamide gel electrophoresis (PAGE) zymograms experiments confirmed the analysis. Additional bioinformatics analysis showed that DNA sequences that code for this particular enzyme are highly conserved in other parasitic trematodes, although they are labeled hypothetical proteins.
RESUMO
Rumen microorganisms produce various fibrolytic enzymes and degrade lignocellulosic materials into nutrient sources for ruminants; therefore, the characterization of fibrolytic enzymes contributing to the polysaccharide degradation in the rumen microbiota is important for efficient animal production. This study characterized the fibrolytic isozyme activities of a rumen microbiota from four groups of housed cattle (1, breeding Japanese Black; 2, feedlot Japanese Black; 3, lactating Holstein Friesian; 4, dry Holstein Friesian). Rumen fluids in all cattle groups showed similar concentrations of total volatile fatty acids and reducing sugars, whereas acetic acid contents and pH were different among them. Predominant genera were commonly detected in all cattle, although the bacterial compositions were different among cattle groups. Zymograms of whole proteins in rumen fluids showed endoglucanase activities at 55 and 57 kDa and xylanase activity at 44 kDa in all cattle. Meanwhile, several fibrolytic isozyme activities differed among cattle groups and individuals. Treponema, Succinivibrio, Anaeroplasma, Succiniclasticum, Ruminococcus, and Butyrivibrio showed positive correlations with fibrolytic isozyme activities. Further, endoglucanase activity at 68 kDa was positively correlated with pH. This study suggests the characteristics of fibrolytic isozyme activities and their correlations with the rumen microbiota.
Assuntos
Celulase , Microbiota , Rúmen/microbiologia , Ração Animal/análise , Animais , Bovinos , Celulase/metabolismo , Dieta , Feminino , Fermentação , Isoenzimas , Lactação , Rúmen/metabolismoRESUMO
Medium-chain triglycerides (MCTs) are an emerging choice to treat neurodegenerative disorders such as Alzheimer's disease. They are triesters of glycerol and three medium-chain fatty acids, such as capric (C8) and caprylic (C10) acids. The availability of C8-C10 methyl esters (C8-C10 ME) from vegetable oil processes has presented an opportunity to use methyl esters as raw materials for the synthesis of MCTs. However, there are few reports on enzymes that can efficiently hydrolyse C8-C10 ME to industrial specifications. Here, we report the discovery and identification of a novel lipase from Lasiodiplodia theobromae fungus (LTL1), which hydrolyses C8-C10 ME efficiently. LTL1 can perform hydrolysis over pH ranges from 3.0 to 9.0 and maintain thermotolerance up to 70 °C. It has high selectivity for monoesters over triesters and displays higher activity over commercially available lipases for C8-C10 ME to achieve 96.17% hydrolysis within 31 h. Structural analysis by protein X-ray crystallography revealed LTL1's well-conserved lipase core domain, together with a partially resolved N-terminal subdomain and an inserted loop, which may suggest its hydrolytic preference for monoesters. In conclusion, our results suggest that LTL1 provides a tractable route towards to production of C8-C10 fatty acids from methyl esters for the synthesis of MCTs.
Assuntos
Ascomicetos/metabolismo , Ésteres/metabolismo , Lipase/metabolismo , Sequência de Aminoácidos , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Hidrólise , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismoRESUMO
BACKGROUND The extracellular expression of enzymes in a secretion host such as Bacillus subtilis is a useful strategy in reducing the cost of downstream processing of industrial enzymes. Here, we present the first report of the successful extracellular expression in Bacillus subtilis WB800 of Geobacillus stearothermophilus lipase (T1.2RQ), a novel industriallydesirable thermostable lipolytic enzyme which has an excellent hydrolytic and transesterification activity. Signal peptides of a-amylase, extracellular protease, and lipase A, as well as two different promoters, were used in the secretion and expression of lipase T1.2RQ. RESULTS Lipase activity assay using p-nitrophenyl laurate showed that all three signal peptides directed the secretion of lipase T1.2RQ into the extracellular medium. The signal peptide of lipase A, resulted in the highest extracellular yield of 5.6 U/ml, which corresponds to a 6-fold increase over the parent Bacillus subtilis WB800 strain. SDS-PAGE and zymogram analysis confirmed that lipase T1.2RQ was correctly processed and secreted in its original size of 44 kDa. A comparison of the expression levels of lipase T1.2RQ in rich medium and minimal media showed that the enzyme was better expressed in rich media, with up to an 8-fold higher yield over minimal media. An attempt to further increase the lipase expression level by promoter optimization showed that, contrary to expectation, the optimized promoter exhibited similar expression levels as the original one, suggesting the need for the optimization of downstream factors. CONCLUSIONS The successful extracellular secretion of lipase T1.2RQ in Bacillus subtilis represents a remarkable feat in the industrial-scale production of this enzyme
Assuntos
Geobacillus stearothermophilus/metabolismo , Geobacillus stearothermophilus/química , Bacillus subtilis/metabolismo , Bacillus subtilis/química , Geobacillus stearothermophilus/isolamento & purificação , Geobacillus stearothermophilus/genética , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/genética , Lipase/químicaRESUMO
The enzyme ß-galactosidase can synthesise novel prebiotics such as oligosaccharides derived from lactulose (OsLu) which can be added as a supplement in infant food formula. In this study, the intracellular ß-galactosidase produced by the alkaliphilic bacterium Paracoccus marcusii was extracted and purified to homogeneity using hydrophobic and metal affinity chromatography. The purification resulted in 18 U/mg specific activity, with a yield of 8.86% and an 18-fold increase in purity. The purified enzyme was a monomer with an 86 kDa molecular weight as determined by SDS PAGE and Q-TOF-LC/MS. ß-Galactosidase was highly active at 50 °C and pH 6-8. The enzyme displayed an alkali tolerant nature by maintaining more than 90% of its initial activity over a pH range of 5-9 after 3 h of incubation. Furthermore, the enzyme activity was enhanced by 37% in the presence of 5 M NaCl and 3 M KCl, indicating its halophilic nature. The effects of metal ions, solvents, and other chemicals on enzyme activity were also studied. The kinetic parameters KM and Vmax of ß-galactosidase were 1 mM and 8.56 µmoles/ml/min and 72.72 mM and 11.81 µmoles/ml/min on using oNPG and lactose as substrates. P. marcusii ß-galactosidase efficiently catalysed the transgalactosylation reaction and synthesised 57 g/L OsLu from 300 g/L lactulose at 40 °C. Thus, in this study we identified a new ß-galactosidase from P. marcusii that can be used for the industrial production of prebiotic oligosaccharides.
Assuntos
Lactulose/metabolismo , Oligossacarídeos/biossíntese , Paracoccus/enzimologia , Prebióticos , beta-Galactosidase/metabolismo , Biocatálise , Configuração de Carboidratos , Cinética , Lactulose/química , Oligossacarídeos/químicaRESUMO
Lipases and esterases are important catalysts with wide varieties of industrial applications. Although many methods have been established for detecting their activities, a simple and sensitive approach for picogram detection of lipolytic enzyme quantity is still highly desirable. Here we report a lipase detection assay which is 1000-fold more sensitive than previously reported methods. Our assay enables the detection of as low as 5 pg and 180 pg of lipolytic activity by direct spotting and zymography, respectively. Furthermore, we demonstrated that the detection sensitivity was adjustable by varying the buffering capacity, which allows for screening of both high and low abundance lipolytic enzymes. Coupled with liquid chromatography-mass spectrometry, our method provides a useful tool for sensitive detection and identification of lipolytic enzymes.
Assuntos
Ensaios Enzimáticos/métodos , Esterases/análise , Lipase/análise , Cromatografia Líquida/métodos , Compostos Cromogênicos/química , Eletroforese em Gel de Poliacrilamida/métodos , Esterases/química , Esterases/metabolismo , Lipase/química , Lipase/metabolismo , Lipólise , Espectrometria de Massas/métodos , Especificidade por SubstratoRESUMO
Plant NADH glutamate dehydrogenase (GDH) is an intriguing enzyme, since it is involved in different metabolic processes owing to its reversible (anabolic/catabolic) activity and due to the oligomeric nature of the enzyme, that gives rise to several isoforms. The complexity of GDH isoenzymes pattern and the variability of the spatial and temporal localization of the different isoforms have limited our comprehension of the physiological role of GDH in plants. Genetics, immunological, and biochemical approaches have been used until now in order to shed light on the regulatory mechanism that control GDH expression in different plant systems and environmental conditions. We describe here the validation of a simple in planta GDH activity staining procedure, providing evidence that it might be used, with different purposes, to determine GDH expression in plant organs, tissues, extracts and also heterologous systems.
Assuntos
Glutamato Desidrogenase/metabolismo , Plantas/enzimologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Corantes , Ensaios Enzimáticos/métodos , Regulação da Expressão Gênica de Plantas , Extratos Vegetais/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismoRESUMO
Background: Proper hybrid layer formation lays the foundation of resin-dentin bonding. The resin infiltration in demineralized dentin collagen couples with the adhesive/resin composites in the mineralized dentin surface. However, the activation of enzymatic activity in the collagen matrix can degrade the hybrid layer. Over the time, it leads to reduced bond strength. Mainly, the enzymes involved are matrix metalloproteinases (MMPs) which are involved in degrading most of the extracellular matrix components. Aloe vera is an herb with an anti-inflammatory effect, but its role in human dentin as an enzyme inhibitor has not been verified yet. Aims: The purpose of the study was designed for evaluating the inhibitory action of Aloe vera on MMP in human dentin with and without dentin bonding agents. Materials and Methods: A total of 15 freshly extracted healthy human teeth were collected and stored at 4°C until use. The roots were separated. The enamel and remnant pulp tissue were removed, and collected teeth were pulverized with liquid nitrogen in the minimum volume of 50-mM phosphate buffer to obtain dentin powder extract. The dentin powder extract is the source of MMPs, and therefore, the extract was treated with A. vera solution and incubated to assess the enzyme inhibition by the plate assay method and zymographic analysis. Results: A. vera treated sample with and without dentin bonding agent showed inhibition of dentin MMP's activity by plate assay method and confirmed by zymogram analysis. Conclusions: A. vera has the potential for inhibiting the MMPs enzyme activity of human dentin collagen with and without dentin bonding agents.
RESUMO
This study explored the effects of probucol on myocardial injury, oxidative stress, and Cav-3 and Smad3 expression in myocardial tissues by establishing VMC rat models, in order to provide a basis for exploring the mechanism of probucol in treatment of VMC. Sixty rats were randomly divided into control group, model group, probucollowdose group, andprobucol highdose group, with 15 in each group. Except for the control group, rats in each group were intraperitoneally injected coxsackievirus B3 diluent (0.2 ml) to replicate VMC models every 4 days. The results showed that Caspase-3 and Caspase-9, myocardial enzymes, cTn I, and MDA levels in the model group significantly increased (P < 0.05), while the SOD level significantly decreased (P < 0.05); and after probucol treatment, Caspase-3 and Caspase-9, myocardial enzymes, cTn I and MDA levels significantly decreased (P < 0.05), and the SOD level significantly increased (P < 0.05). Compared with the control group, there was an increase in myocardial fibers with significant lesions in the model group, and the pathological scores and the mRNA and protein expression levels of Cav-3 and Smad3 in myocardial cells significantly increased (P < 0.05). Compared with the control group, the myocardial tissue lesions were improved in the probucol low dose group and highdose group, and the pathological scores and the mRNA and protein expression levels of Cav-3 and Smad3 in myocardial cells were significantly reduced (P < 0.05). In conclusion, probucol can significantly improve the pathological damage of myocardial tissue in VMC rats, and its mechanism may be related to improving the expression of myocardium-related proteins Caspase-3 and Caspase-9, inhibiting oxidative stress response, and down-regulating Cav-3 and Smad3 gene expression in myocardial tissue of VMC rats.
Assuntos
Infecções por Coxsackievirus , Miocardite , Animais , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/tratamento farmacológico , Miocárdio , Probucol/farmacologia , RatosRESUMO
Matrixins play a major role in tissue regeneration and also in various patho-physiological processes. Discovery of matrix metallo proteins (MMPs) and their detailed structural and functional analysis would lead to the development of numerous potent synthetic inhibitors of matrixins to treat certain diseases. In the present investigation, a marine cephalopod- Octopus sp. collected from Cochin, in the south western Indian Ocean was used as animal model for purification of matrixins. The measurements, count, indices and other morphometric characters were noted down before assessing the presence of matrixins in the crude extract of Octopus samples. Purification of matrixins was carried out employing gel filtration chromatography and the purified matrixins was confirmed by gelatin zymogram. The purity of the protein was checked by both native and SDS-PAGE. The studies have provided clear indications of production of MMPs or matrixins with gelatinolytic activity in Octopus sp.
Assuntos
Organismos Aquáticos/química , Metaloproteinases da Matriz/isolamento & purificação , Animais , Organismos Aquáticos/enzimologia , Cromatografia em Gel , Misturas Complexas/química , Oceano Índico , Metaloproteinases da Matriz/classificação , OctopodiformesRESUMO
BACKGROUND: Fibrinolytic enzymes, such as Nattokinases from Bacillus species are known to degrade the fibrin blood clots. They belong to serine protease group having commercial applications, such as therapeutic agents and functional food formulation. OBJECTIVE: The present study reports some characteristics and fibrinolytic activity of serine protease from B. subtilis C10 strain that was isolated from shrimp shell. METHODS: Extracellular enzyme from B. subtilis C10 culture was harvested and partially purified by ammonium sulphate precipitation. Fibrinolytic activity of the enzyme was determined by zymography and measured by spectrophotometry with fibrinogen and thrombin used as substrates. The optimal temperature and pH for fibrinolytic activity were studied in the range of 31-43ºC and 5-10, respectively. The thermal and pH stability of enzyme was studied by incubating enzyme for 30 min in the same range of temperature and pH as above. The effect of some metal ions and reagents on fibrinolytic activity of enzyme was evaluated by concentrations of 5 mM and 5%, respectively. RESULTS: Zymogram analysis indicated the presence of four fibrinolytic enzymes with molecular weights of approximately 69, 67, 39 and 36 kDa. The optimal temperature and pH for enzyme activity were 37°C and 9, respectively. The thermal and pH stability ranged from 35-39°C and 8-10, respectively. Fibrinolytic activity reached a maximum value of about 400 U/mg protein after 16 h of C10 strain culture. Enzyme has been drastically inhibited by PMSF and SDS, and partially inhibited by EDTA, while Triton X-100 has significantly increased enzyme activity. Effects of ions such as Mg2+, Ca2+ and Mn2+ on enzyme were negligible, except Cu2+ and Zn2+ have strongly decreased its activity. CONCLUSION: Results from the present study suggested that enzyme obtained from B. subtilis C10 could be serine protease that has a high fibrinolytic activity up to about 400 U/mg protein at the most appropriate temperature and pH of 37ºC and 9. This activity can be improved up to 142% by incubating enzyme with 5% Triton X-100 for 30 min.
Assuntos
Bacillus subtilis/enzimologia , Fibrinolíticos/farmacologia , Serina Proteases/farmacologia , Exoesqueleto/microbiologia , Animais , Fibrinolíticos/isolamento & purificação , Concentração de Íons de Hidrogênio , Peso Molecular , Penaeidae/microbiologia , Serina Proteases/isolamento & purificação , TemperaturaRESUMO
Treatment with rumen microorganisms improves the methane fermentation of undegradable lignocellulosic biomass; however, the role of endoglucanase in lignocellulose digestion remains unclear. This study was conducted to investigate endoglucanases contributing to cellulose degradation during treatment with rumen microorganisms, using carboxymethyl cellulose (CMC) as a substrate. The rate of CMC degradation increased for the first 24 h of treatment. Zymogram analysis revealed that endoglucanases of 52 and 53 kDa exhibited high enzyme activity for the first 12 h, whereas endoglucanases of 42, 50, and 101 kDa exhibited high enzyme activities from 12 to 24 h. This indicates that the activities of these five endoglucanases shifted and contributed to efficient CMC degradation. Metagenomic analysis revealed that the relative abundances of Selenomonas, Eudiplodinium, and Metadinium decreased after 12 h, which was positively correlated with the 52- and 53-kDa endoglucanases. Additionally, the relative abundances of Porphyromonas, Didinium, unclassified Bacteroidetes, Clostridiales family XI, Lachnospiraceae and Sphingobacteriaceae increased for the first 24 h, which was positively correlated with endoglucanases of 42, 50, and 101 kDa. This study suggests that uncharacterized and non-dominant microorganisms produce and/or contribute to activity of 40, 50, 52, 53, and 101 kDa endoglucanases, enhancing CMC degradation during treatment with rumen microorganisms.
RESUMO
Coomassie brilliant blue R250, an anionic dye is the most popular stain to detect proteins resolved in SDS-PAGE gels. Crystal violet, a cationic dye was found to be versatile and stained proteins in SDS-PAGE gels and in zymograms. Stained proteins can be transferred to nitrocellulose and the stained proteins on the western detected with enzyme coupled antibodies. Staining can be reversed. Staining takes 3â¯h at RT or 30â¯minâ¯at 60⯰C. Crystal violet stained some E. coli high and low molecular weight proteins not stained by Coomassie blue R250. Crystal violet stained down to 16â¯ng of protein, some five-fold lower than Coomassie blue, though the two stains had a similar linear dynamic range. The staining sensitivity could be increased to 2â¯ng when crystal violet and Coomassie blue were combined in a double staining/counterion dye formulation. The low concentrations of the dye without a destaining step reduces the costs of the technique and results in a more environmentally friendly stain compared to traditional staining methods.