Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Hum Genet ; 111(9): 1899-1913, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173627

RESUMO

Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.


Assuntos
Estudo de Associação Genômica Ampla , Fígado , Locos de Características Quantitativas , Humanos , Alelos , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Fígado/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Cell Rep Methods ; 3(4): 100442, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159661

RESUMO

Somatic mutations occur as random genetic changes in genes through protein-affecting mutations (PAMs), gene fusions, or copy number alterations (CNAs). Mutations of different types can have a similar phenotypic effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile. We developed OncoMerge to fill this niche of integrating somatic mutations to capture allelic heterogeneity, assign a function to mutations, and overcome known obstacles in cancer genetics. Application of OncoMerge to TCGA Pan-Cancer Atlas increased detection of somatically mutated genes and improved the prediction of the somatic mutation role as either activating or loss of function. Using integrated somatic mutation matrices increased the power to infer gene regulatory networks and uncovered the enrichment of switch-like feedback motifs and delay-inducing feedforward loops. These studies demonstrate that OncoMerge efficiently integrates PAMs, fusions, and CNAs and strengthens downstream analyses linking somatic mutations to cancer phenotypes.


Assuntos
Variações do Número de Cópias de DNA , Fusão Gênica , Variações do Número de Cópias de DNA/genética , Mutação , Redes Reguladoras de Genes , Fenótipo
3.
Genet Epidemiol ; 47(1): 78-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36047334

RESUMO

Linkage analysis maps genetic loci for a heritable trait by identifying genomic regions with excess relatedness among individuals with similar trait values. Analysis may be conducted on related individuals from families, or on samples of unrelated individuals from a population. For allelically heterogeneous traits, population-based linkage analysis can be more powerful than genotypic-association analysis. Here, we focus on linkage analysis in a population sample, but use sequences rather than individuals as our unit of observation. Earlier investigations of sequence-based linkage mapping relied on known sequence relatedness, whereas we infer relatedness from the sequence data. We propose two ways to associate similarity in relatedness of sequences with similarity in their trait values and compare the resulting linkage methods to two genotypic-association methods. We also introduce a procedure to label case sequences as potential carriers or noncarriers of causal variants after an association has been found. This post hoc labeling of case sequences is based on inferred relatedness to other case sequences. Our simulation results indicate that methods based on sequence relatedness improve localization and perform as well as genotypic-association methods for detecting rare causal variants. Sequence-based linkage analysis therefore has potential to fine-map allelically heterogeneous disease traits.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico/métodos , Fenótipo , Genótipo , Ligação Genética , Desequilíbrio de Ligação
4.
Clin Chest Med ; 43(4): 591-602, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344068

RESUMO

Cystic fibrosis (CF) is a multiorgan disease caused by a wide variety of mutations in the cystic fibrosis transmembrane conductance regulator gene. As treatment has progressed from symptom mitigation to targeting of specific molecular defects, genetics has played an important role in identifying the proper precision therapies for each individual. Novel therapeutic approaches are focused on expanding treatment to a greater number of individuals as well as working toward a cure. This review discusses the role of genetics in our understanding of CF with a particular emphasis on how genetics informs the exciting landscape of current and novel CF therapies.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Mutação
5.
Hum Genomics ; 16(1): 31, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974416

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)-recommended five variant classification categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) have been widely used in medical genetics. However, these guidelines are fundamentally constrained in practice owing to their focus upon Mendelian disease genes and their dichotomous classification of variants as being either causal or not. Herein, we attempt to expand the ACMG guidelines into a general variant classification framework that takes into account not only the continuum of clinical phenotypes, but also the continuum of the variants' genetic effects, and the different pathological roles of the implicated genes. MAIN BODY: As a disease model, we employed chronic pancreatitis (CP), which manifests clinically as a spectrum from monogenic to multifactorial. Bearing in mind that any general conceptual proposal should be based upon sound data, we focused our analysis on the four most extensively studied CP genes, PRSS1, CFTR, SPINK1 and CTRC. Based upon several cross-gene and cross-variant comparisons, we first assigned the different genes to two distinct categories in terms of disease causation: CP-causing (PRSS1 and SPINK1) and CP-predisposing (CFTR and CTRC). We then employed two new classificatory categories, "predisposing" and "likely predisposing", to replace ACMG's "pathogenic" and "likely pathogenic" categories in the context of CP-predisposing genes, thereby classifying all pathologically relevant variants in these genes as "predisposing". In the case of CP-causing genes, the two new classificatory categories served to extend the five ACMG categories whilst two thresholds (allele frequency and functional) were introduced to discriminate "pathogenic" from "predisposing" variants. CONCLUSION: Employing CP as a disease model, we expand ACMG guidelines into a five-category classification system (predisposing, likely predisposing, uncertain significance, likely benign, and benign) and a seven-category classification system (pathogenic, likely pathogenic, predisposing, likely predisposing, uncertain significance, likely benign, and benign) in the context of disease-predisposing and disease-causing genes, respectively. Taken together, the two systems constitute a general variant classification framework that, in principle, should span the entire spectrum of variants in any disease-related gene. The maximal compliance of our five-category and seven-category classification systems with the ACMG guidelines ought to facilitate their practical application.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Frequência do Gene , Testes Genéticos , Variação Genética , Genômica , Humanos , Pancreatite Crônica/genética , Análise de Sequência de DNA , Inibidor da Tripsina Pancreática de Kazal/genética , Estados Unidos
6.
7.
Ital J Pediatr ; 47(1): 2, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407736

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a life-threatening disease affecting about 1:3000 newborns in Caucasian populations. The introduction of newborn screening for cystic fibrosis (CF NBS) has improved the clinical outcomes of individuals with CF through early diagnosis and early treatment. NBS strategies have been implemented over time. CF NBS was introduced extensively in 1984 in Tuscany, a region with 3.7 million people, characterized by a high allelic heterogeneity of CFTR gene. AIM AND METHODS: The aim of the study is to present the results from 34 years (1984-2018) of CF NBS, retrospectively evaluating the sensitivity, specificity and predictive values of the tests. In particular, we studied the impact of the introduction of DNA molecular analysis in NBS in a region with high allelic heterogeneity, such as Tuscany. RESULTS: Over these 34 years, 919,520 neonates were screened, using four different NBS strategies. From 1984 to 1991, CF NBS was performed by the determination of albumin on dried meconium (sensitivity 68.75%; specificity 99.82%). Subsequently, the analysis of immunoreactive trypsinogen on a blood spot was adopted as CF NBS protocol (sensitivity 83.33%; specificity 99.77%). From 1992 to 2010, this strategy was associated with lactase meconium dosage: IRT1/IRT2 + LACT protocol (sensitivity 87.50%; specificity 99.82%). From 2011, when the existing algorithm was integrated by analysis of CF causing variants of the CFTR gene (IRT1/IRT2 + LACT + IRT1/DNA protocol), a substantial improvement in sensitivity was seen (senisitivity 96.15%; specificity 99.75%). Other improved parameters with DNA analysis in the NBS programme, compared with the previous method, were the diagnosis time (52 days vs. 38 days) and the recall rate (0.58 to 0.38%). CONCLUSION: The inclusion of DNA analysis in the NBS was a fundamental step in improving sensitivity, even in a region with high allelic variability.


Assuntos
Fibrose Cística/diagnóstico , Fibrose Cística/epidemiologia , Triagem Neonatal , Feminino , Testes Genéticos , Humanos , Recém-Nascido , Itália , Masculino , Estudos Retrospectivos , Sensibilidade e Especificidade
8.
Neurobiol Dis ; 145: 105082, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927063

RESUMO

Causative genes involved in familial forms of dementias, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB), as well as amyotrophic lateral sclerosis and prion diseases where dementia is present as a significant clinical feature, are associated with distinct proteinopathies. This review summarizes the relationship between known genetic determinants of these dementia syndromes and variations in key neuropathological proteins in terms of three types of heterogeneity: (i) Locus Heterogeneity, whereby mutations in different genes cause a similar proteinopathy, as exemplified by mutations in APP, PSEN1 and PSEN2 leading to AD neuropathology; (ii) Allelic Heterogeneity, whereby different mutations in the same gene lead to different proteinopathies or neuropathological severity, as exemplified by different mutations in MAPT and PRNP giving rise to protein species that differ in their biochemistry and affected cell types; and (iii) Phenotypic Heterogeneity, where identical gene mutations lead to different proteinopathies, as exemplified by LRRK2 p.G2019S being associated with variable Lewy body presence and alternative AD neuropathology or FTLD-tau. Of note, the perceived homogeneity in histologic phenotypes may arise from laboratory-specific assessment protocols which can differ in the panel of proteins screened. Finally, the understanding of the complex relationship between genotype and phenotype in dementia families is highly relevant in terms of therapeutic strategies which range from targeting specific genes, to a broader strategy of targeting a downstream, common biochemical problem that leads to the histopathology.


Assuntos
Demência/genética , Demência/patologia , Estudos de Associação Genética , Humanos
9.
Fertil Steril ; 114(3): 524-534, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32773111

RESUMO

OBJECTIVE: To determine the frequency of cystic fibrosis (CF) carriers among sperm donors in Spain studied through a complete analysis of the CFTR gene and to compare the results with those that would have been obtained by the 4 genotyping panels of the CFTR gene most commonly used as a carrier test in the context of assisted reproduction in our country. DESIGN: Descriptive observational study. SETTING: Private center. PATIENTS: Nine hundred thirty-five sperm donors, from January 2014 to June 2019. INTERVENTION: None. MAIN OUTCOME MEASURE: Presence of pathogenic variants in the CFTR gene. RESULTS: 17% of the donors were carriers of at least 1 pathogenic variant in CFTR, with 39 different pathogenic variants detected. Only 4 of these 39 variants (10.27%) would have been detected by the 4 genotyping tests considered, and 22 variants (56.41%) would not have been detected by any of the genotyping tests. The pathogenic variants of the CFTR gene included in the different genotyping tests analyzed vary widely, and <50% are common to all of them. CONCLUSIONS: Although the was not based in the general population, these results show that the use of genotyping tests is associated with a high reproductive risk, because the rate of detection of CF carriers was lower when these panels were applied, in comparison with the complete study of the CFTR gene. We recommend that complete sequencing of the CFTR gene by next-generation sequencing be performed as a screening method for CF in sperm donors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Triagem de Portadores Genéticos , Heterozigoto , Mutação , Espermatozoides , Doadores de Tecidos , Adolescente , Adulto , Análise Mutacional de DNA , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Valor Preditivo dos Testes , Adulto Jovem
10.
Prog Retin Eye Res ; 79: 100861, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32278709

RESUMO

The ABCA4 protein (then called a "rim protein") was first identified in 1978 in the rims and incisures of rod photoreceptors. The corresponding gene, ABCA4, was cloned in 1997, and variants were identified as the cause of autosomal recessive Stargardt disease (STGD1). Over the next two decades, variation in ABCA4 has been attributed to phenotypes other than the classically defined STGD1 or fundus flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild disease sometimes resembling, and confused with, age-related macular degeneration. Similarly, analysis of the ABCA4 locus uncovered a trove of genetic information, including >1200 disease-causing mutations of varying severity, and of all types - missense, nonsense, small deletions/insertions, and splicing affecting variants, of which many are located deep-intronic. Altogether, this has greatly expanded our understanding of complexity not only of the diseases caused by ABCA4 mutations, but of all Mendelian diseases in general. This review provides an in depth assessment of the cumulative knowledge of ABCA4-associated retinopathy - clinical manifestations, genetic complexity, pathophysiology as well as current and proposed therapeutic approaches.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , DNA/genética , Terapia Genética/métodos , Mutação , Doenças Retinianas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Fenótipo , Doenças Retinianas/metabolismo , Doenças Retinianas/terapia
11.
Pediatr Neurol ; 106: 43-49, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139166

RESUMO

BACKGROUND: Joubert syndrome and related disorders are a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosis. Joubert syndrome is a clinically and genetically heterogeneous disorder involving mutations in 35 ciliopathy-related genes. We present a large cohort of 59 patients with Joubert syndrome from 55 families. Molecular analysis was performed in 35 families (trio). METHODS: Clinical exome analysis was performed to identify causal mutations, and genotype-phenotype correlations were evaluated. RESULTS: All of the cases were stratified into pure Joubert syndrome (62.7%), Joubert syndrome with retinal disease (22.0%), polydactyly (8.5%), and liver (1.7%) and kidney (1.7%) involvement. Joubert syndrome-related disorders include Meckel-Gruber syndrome in 5.1% cases and Leber congenital amaurosis (1.7%). Of the 35 Joubert syndrome-related genes, 11 were identified in these patients, i.e., CEP290, C5ORF, TCTN1, CC2D2A, RPGRP1L, TCTN3, AHI1, INPP5E, TCTN2, NPHP1, and TMEM237. For the first time, we identified a ciliopathy gene, CCDC28B, as a causal gene in Joubert syndrome in one family. CEP290 accounted for 37.8% cases of pure Joubert syndrome, Joubert syndrome with retinal and renal disease, and Meckel-Gruber syndrome. The p.G1890∗ allele in CEP290 is highly recurrent. Of the six families with Joubert syndrome who had a prenatal diagnosis, one fetus was normal, two were carriers, and three were affected. CONCLUSIONS: This is the largest study of Joubert syndrome from India. Although a high degree of locus and allelic heterogeneity was observed, CEP290 variants were the most common among these patients.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Ciliopatias/diagnóstico , Ciliopatias/genética , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Retina/anormalidades , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Índia , Lactente , Masculino , Linhagem , Fenótipo , Diagnóstico Pré-Natal , Sequenciamento do Exoma
12.
Genet Epidemiol ; 44(1): 16-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647587

RESUMO

Genome-wide association studies (GWAS) have been used to establish thousands of genetic associations across numerous phenotypes. To improve the power of GWAS and generalize associations across ethnic groups, transethnic meta-analysis methods are used to combine the results of several GWAS from diverse ancestries. The goal of this study is to identify genetic associations for eight quantitative metabolic syndrome (MetS) traits through a meta-analysis across four ethnic groups. Traits were measured in the GENetics of Noninsulin dependent Diabetes Mellitus (GENNID) Study which consists of African-American (families = 73, individuals = 288), European-American (families = 79, individuals = 519), Japanese-American (families = 17, individuals = 132), and Mexican-American (families = 113, individuals = 610) samples. Genome-wide association results from these four ethnic groups were combined using four meta-analysis methods: fixed effects, random effects, TransMeta, and MR-MEGA. We provide an empirical comparison of the four meta-analysis methods from the GENNID results, discuss which types of loci (characterized by allelic heterogeneity) appear to be better detected by each of the four meta-analysis methods in the GENNID Study, and validate our results using previous genetic discoveries. We specifically compare the two transethnic methods, TransMeta and MR-MEGA, and discuss how each transethnic method's framework relates to the types of loci best detected by each method.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Metanálise como Assunto , Síndrome Metabólica/etnologia , Síndrome Metabólica/genética , Negro ou Afro-Americano/genética , Asiático/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Masculino , Americanos Mexicanos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética
13.
Mult Scler ; 26(11): 1329-1339, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31368393

RESUMO

BACKGROUND: Substantial progress has been made toward unraveling the genetic architecture of multiple sclerosis (MS) within populations of European ancestry, but few genetic studies have focused on Hispanic and African American populations within the United States. OBJECTIVE: We sought to test the relevance of common European MS risk variants outside of the major histocompatibility complex (n = 200) within these populations. METHODS: Genotype data were available on 2652 Hispanics (1298 with MS, 1354 controls) and 2435 African Americans (1298 with MS, 1137 controls). We conducted single variant, pathway, and cumulative genetic risk score analyses. RESULTS: We found less replication than statistical power suggested, particularly among African Americans. This could be due to limited correlation between the tested and causal variants within the sample or alternatively could indicate allelic and locus heterogeneity. Differences were observed between pathways enriched among the replicating versus all 200 variants. Although these differences should be examined in larger samples, a potential role exists for gene-environment or gene-gene interactions which alter phenotype differentially across racial and ethnic groups. Cumulative genetic risk scores were associated with MS within each study sample but showed limited diagnostic capability. CONCLUSION: These findings provide a framework for fine-mapping efforts in multi-ethnic populations of MS.


Assuntos
Negro ou Afro-Americano , Esclerose Múltipla , Negro ou Afro-Americano/genética , Alelos , Variação Genética , Hispânico ou Latino/genética , Humanos , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologia
14.
Front Genet ; 10: 413, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156695

RESUMO

Background: Vitamin-D binding protein (DBP) also known as GC protein, is a major determinant for vitamin- D metabolism and transport. GC1F, GC1S, and GC2 are the three allelic variants (denoted as rs4588 and rs7041) of GC, and known to be associated with chronic obstructive pulmonary disease (COPD). However, contradictory reports and population specific risk attributed by these alleles warranted detailed genetic epidemiology study to establish the association between GC variants and COPD. In this study we performed a meta-analysis and investigated the genetic architecture of GC locus to establish the association and uncover the plausible reason for allelic heterogeneity. Methods: Published cross-sectional case control studies were screened and meta-analysis was performed between GC variants and COPD outcome. RevMan-v5.3 software was used to perform random and/or fixed models to calculate pooled odds ratio (Meta-OR). Linkage disequilibrium (LD) and haplotypes at GC locus were evaluated using 1000 Genomes genotype data. In silico functional implications of rs4588 and rs7041 was tested using publicly available tools. Results: GC1F allele and GC1F/1F genotype were found to confer COPD risk in overall meta-analysis. GC1S/1S was found to confer risk only among Europeans. In silico investigation of rs4588 and rs7041 identified strong eQTL effects and potential role in regulation of GC expression. Large differences in allele frequencies, linkage disequilibrium (LD) and haplotypes were identified at GC locus across different populations (Japanese, African, Europeans, and Indians), which may explain the variable association of different GC alleles in different populations. Conclusion: GC1F and GC1F/1F impose significant genetic risk for COPD, among Asians. Considerable differences in allele frequencies and LD structure in GC locus may impose population specific risk.

15.
Infect Genet Evol ; 73: 276-286, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103723

RESUMO

Vitamin D (VitD) may modulate anti-HIV-1 responses modifying the risk to acquire the HIV-1-infection. We performed a nested case-control exploratory study involving 413 individuals; HIV-1-exposed seropositives (cases) and seronegatives (HESN) (controls) from three cohorts: sexually-exposed from Colombia and Italy and parenterally-exposed from Spain. The association and interactions of 139 variants in 9 VitD pathway genes, and in 14 antiviral genes with resistance/susceptibility (R/S) to HIV-1 infection was evaluated. Associations between variants and mRNA levels were also analyzed in the Colombian samples. Variants and haplotypes in genes of VitD and antiviral pathways were associated with R/S, but specific associations were not reproduced in all cohorts. Allelic heterogeneity could explain such inconsistency since the associations found in all cohorts were consistently in the same genes: VDR and RXRA of the VitD pathway genes and in TLR2 and RNASE4. Remarkably, the multi-locus genotypes (interacting variants) observed in genes of VitD and antiviral pathways were present in most HESNs of all cohorts. Finally, HESNs carrying resistance-associated variants had higher levels of VitD in plasma, of VDR mRNA in blood cells, and of ELAFIN and defensins mRNA in the oral mucosa. In conclusion, despite allelic heterogeneity, most likely due to differences in the genetic history of the populations, the associations were locus dependent suggesting that genes of the VitD pathway might act in concert with antiviral genes modulating the resistance phenotype of the HESNs. Although these associations were significant after permutation test, only haplotype results remained statistically significant after Bonferroni test, requiring further replications in larger cohorts and functional analyzes to validate these conclusions.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Imunidade Inata/genética , Vitamina D/genética , Adulto , Alelos , Estudos de Casos e Controles , Feminino , Variação Genética/genética , Genótipo , HIV-1 , Humanos , Itália , Masculino , Receptores de Calcitriol/genética , Espanha
16.
Hum Mutat ; 40(1): 53-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303587

RESUMO

Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.


Assuntos
Segregação de Cromossomos/genética , Consanguinidade , Perda Auditiva/genética , Família , Feminino , Genes Recessivos , Predisposição Genética para Doença , Humanos , Masculino , Mutação/genética , Paquistão , Linhagem
17.
Am J Hum Genet ; 103(5): 637-653, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388398

RESUMO

Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.


Assuntos
Locos de Características Quantitativas/genética , Animais , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação/genética
18.
Annu Rev Genomics Hum Genet ; 19: 149-175, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30169122

RESUMO

This review highlights molecular genetic studies of monogenic traits where common pathogenic mutations occur in black families from sub-Saharan Africa. Examples of founder mutations have been identified for oculocutaneous albinism, cystic fibrosis, Fanconi anemia, and Gaucher disease. Although there are few studies from Africa, some of the mutations traverse populations across the continent, and they are almost all different from the common mutations observed in non-African populations. Myotonic dystrophy is curiously absent among Africans, and nonsyndromic deafness does not arise from mutations in GJB2 and GJB7. Locus heterogeneity is present for Huntington disease, with two common triplet expansion loci in Africa, HTT and JPH3. These findings have important clinical consequences for diagnosis, treatment, and genetic counseling in affected families. We currently have just a glimpse of the molecular etiology of monogenic diseases in sub-Saharan Africa, a proverbial "ears of the hippo" situation.


Assuntos
População Negra/genética , Efeito Fundador , Doenças Genéticas Inatas/genética , Mutação , África Subsaariana , Heterogeneidade Genética , Humanos
19.
Cerebellum ; 17(5): 692-697, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29949095

RESUMO

Mutations in the potassium channel gene KCNC3 (Kv3.3) cause the autosomal dominant neurological disease, spinocerebellar ataxia 13 (SCA13). In this study, we expand the genotype-phenotype repertoire of SCA13 by describing the novel KCNC3 deletion p.Pro583_Pro585del highlighting the allelic heterogeneity observed in SCA13 patients. We characterize adult-onset, progressive clinical symptoms of two afflicted kindred and introduce the symptom of profound spasticity not previously associated with the SCA13 phenotype. We also present molecular and electrophysiological characterizations of the mutant protein in mammalian cell culture. Mechanistically, the p.Pro583_Pro585del protein showed normal membrane trafficking with an altered electrophysiological profile, including slower inactivation and decreased sensitivity to the inactivation-accelerating effects of the actin depolymerizer latrunculin B. Taken together, our results highlight the clinical importance of the intracellular C-terminal portion of Kv3.3 and its association with ion channel function.


Assuntos
Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Deleção de Sequência , Canais de Potássio Shaw/genética , Ataxias Espinocerebelares/congênito , Adulto , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células CHO , Cricetulus , Feminino , Humanos , Masculino , Toxinas Marinhas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Espasticidade Muscular/diagnóstico por imagem , Fenótipo , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Tiazolidinas/farmacologia
20.
BMC Genomics ; 19(1): 71, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29357834

RESUMO

BACKGROUND: One of the approaches to detect genetics variants affecting fitness traits is to identify their surrounding genomic signatures of past selection. With established methods for detecting selection signatures and the current and future availability of large datasets, such studies should have the power to not only detect these signatures but also to infer their selective histories. Domesticated animals offer a powerful model for these approaches as they adapted rapidly to environmental and human-mediated constraints in a relatively short time. We investigated this question by studying a large dataset of 542 individuals from 27 domestic sheep populations raised in France, genotyped for more than 500,000 SNPs. RESULTS: Population structure analysis revealed that this set of populations harbour a large part of European sheep diversity in a small geographical area, offering a powerful model for the study of adaptation. Identification of extreme SNP and haplotype frequency differences between populations listed 126 genomic regions likely affected by selection. These signatures revealed selection at loci commonly identified as selection targets in many species ("selection hotspots") including ABCG2, LCORL/NCAPG, MSTN, and coat colour genes such as ASIP, MC1R, MITF, and TYRP1. For one of these regions (ABCG2, LCORL/NCAPG), we could propose a historical scenario leading to the introgression of an adaptive allele into a new genetic background. Among selection signatures, we found clear evidence for parallel selection events in different genetic backgrounds, most likely for different mutations. We confirmed this allelic heterogeneity in one case by resequencing the MC1R gene in three black-faced breeds. CONCLUSIONS: Our study illustrates how dense genetic data in multiple populations allows the deciphering of evolutionary history of populations and of their adaptive mutations.


Assuntos
Evolução Molecular , Mutação , Seleção Genética , Carneiro Doméstico/genética , Alelos , Animais , Loci Gênicos , Genômica , Técnicas de Genotipagem , Haplótipos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA