Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Agric Food Chem ; 72(25): 14229-14240, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797952

RESUMO

Fusarium verticillioides (F. verticillioides) is a globally recognized and highly impactful fungal pathogen of maize, causing yield losses and producing harmful mycotoxins that pose a threat to human and animal health. However, the genetic tools available for studying this crucial fungus are currently limited in comparison to other important fungal pathogens. To address this, an efficient CRISPR/Cas9 genome editing system based on an autonomously replicating plasmid with an AMA1 sequence was established in this study. First, gene disruption of pyrG and pyrE via nonhomologous end-joining (NHEJ) pathway was successfully achieved, with efficiency ranging from 66 to 100%. Second, precise gene deletions were achieved with remarkable efficiency using a dual sgRNA expression strategy. Third, the developed genome editing system can be applied to generate designer chromosomes in F. verticillioides, as evidenced by the deletion of a crucial 38 kb fragment required for fumonisin biosynthesis. Fourth, the pyrG recycling system has been established and successfully applied in F. verticillioides. Lastly, the developed ΔFUM1 and ΔFUM mutants can serve as biocontrol agents to reduce the fumonisin B1 (FB1) contamination produced by the toxigenic strain. Taken together, these significant advancements in genetic manipulation and biocontrol strategies provide valuable tools for studying and mitigating the impact of F. verticillioides on maize crops.


Assuntos
Sistemas CRISPR-Cas , Proteínas Fúngicas , Fusarium , Edição de Genes , Micotoxinas , Zea mays , Fusarium/genética , Fusarium/metabolismo , Edição de Genes/métodos , Zea mays/microbiologia , Micotoxinas/metabolismo , Micotoxinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fumonisinas/metabolismo , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle
2.
Pestic Biochem Physiol ; 201: 105887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685218

RESUMO

Aspergillus flavus is a ubiquitous facultative pathogen that routinely infects important crops leading to formation of aflatoxins during crop development and after harvest. Corn and peanuts in warm and/or drought-prone regions are highly susceptible to aflatoxin contamination. Controlling aflatoxin using atoxigenic A. flavus is a widely adopted strategy. However, no A. flavus genotypes are currently approved for use in China. The current study aimed to select atoxigenic A. flavus endemic to Guangxi Zhuang Autonomous Region with potential as active ingredients of aflatoxin biocontrol products. A total of 204 A. flavus isolates from corn, peanuts, and field soil were evaluated for ability to produce the targeted mycotoxins. Overall, 57.3% could not produce aflatoxins while 17.15% were incapable of producing both aflatoxins and CPA. Atoxigenic germplasm endemic to Guangxi was highly diverse, yielding 8 different gene deletion patterns in the aflatoxin and CPA biosynthesis gene clusters ranging from no deletion to deletion of both clusters. Inoculation of corn and peanuts with both an aflatoxin producer and selected atoxigenic genotypes showed significant reduction (74 to 99%) in aflatoxin B1 (AFB1) formation compared with inoculation with the aflatoxin producer alone. Atoxigenic genotypes also efficiently degraded AFB1 (61%). Furthermore, atoxigenic isolates were also highly efficient at reducing aflatoxin concentrations even when present at lower concentrations than aflatoxin producers. The use of multiple atoxigenics was not always as effective as the use of a single atoxigenic. Effective atoxigenic genotypes of A. flavus with known mechanisms of atoxigenicity are demonstrated to be endemic to Southern China. These A. flavus may be utilized as active ingredients of biocontrol products without concern for detrimental impacts that may result from introduction of exotic fungi. Field efficacy trials in the agroecosystems of Southern China are needed to determine the extent to which such products may allow the production of safer food and feed.


Assuntos
Aflatoxinas , Arachis , Aspergillus flavus , Zea mays , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Arachis/microbiologia , Zea mays/microbiologia , China , Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Genótipo
3.
Avian Pathol ; 53(3): 218-225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38318791

RESUMO

The objective of this trial was to evaluate how broilers responded to Aspergillus flavus strains that are toxigenic and atoxigenic. The study included four treatments in a 2 × 2 factorial design, with six replicates of 10 birds each. As a result of this study measuring feed intake (FI), weight gain (WG), feed conversion ratio (FCR), crude protein, ether extract, and crude fibre, the interaction was insignificant between the toxigenic and atoxigenic diets (P > 0.05). Consumption of toxigenic aflatoxin B1-500 ppb diet decreased FI and WG but increased FCR, and cost to produce live broiler weight (P < 0.05) compared to the control diets. The addition of atoxigenic strains to contaminated diets significantly offset (P < 0.05) the effects. Diets with or without 500 ppb toxigenic and atoxigenic A. flavus did not affect the relative weight g/100gBW of pancreas, gizzard and bursa of Fabricius. Dietary inclusion of 500 ppb toxigenic Aspergillus spp. increased the relative weight (P < 0.05) of the kidney, liver, spleen and thymus while atoxigenic dietary addition reduced the relative weight of the same organs (P < 0.05). Dietary inclusion of toxigenic and atoxigenic Aspergillus spp. did not significantly affect the haematological parameters measured (P < 0.05). Dietary inclusion of 500 ppb toxigenic Aspergillus elevated the urea, creatine, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the serum of the broilers (P < 0.05). A decrease was observed when atox igenic A. flavus was used in the intervention for urea, creatinine and AST (P < 0.05), whereas an insignificant reduction was observed for ALT and ALP (P ≤ 0.05). This study concluded that dietary atoxigenic strain improved broiler performance, digestibility, and blood parameters.


Assuntos
Aflatoxinas , Animais , Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Galinhas , Dieta/veterinária , Ureia/metabolismo
4.
J Fungi (Basel) ; 9(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367626

RESUMO

Aflatoxins (AFs) are considered to play important functions in species of Aspergillus section Flavi including an antioxidative role, as a deterrent against fungivorous insects, and in antibiosis. Atoxigenic Flavi are known to degrade AF-B1 (B1). To better understand the purpose of AF degradation, we investigated the degradation of B1 and AF-G1 (G1) in an antioxidative role in Flavi. Atoxigenic and toxigenic Flavi were treated with artificial B1 and G1 with or without the antioxidant selenium (Se), which is expected to affect levels of AF. After incubations, AF levels were measured by HPLC. To estimate which population would likely be favoured between toxigenic and atoxigenic Flavi under Se, we investigated the fitness, by spore count, of the Flavi as a result of exposure to 0, 0.40, and 0.86 µg/g Se in 3%-sucrose cornmeal agar (3gCMA). Results showed that levels B1 in medium without Se were reduced in all isolates, while G1 did not significantly change. When the medium was treated with Se, toxigenic Flavi significantly digested less B1, while levels of G1 significantly increased. Se did not affect the digestion of B1 in atoxigenic Flavi, and also did not alter levels of G1. Furthermore, atoxigenic strains were significantly fitter than toxigenic strains at Se 0.86 µg/g 3gCMA. Findings show that while atoxigenic Flavi degraded B1, toxigenic Flavi modulated its levels through an antioxidative mechanism to levels less than they produced. Furthermore, B1 was preferred in the antioxidative role compared to G1 in the toxigenic isolates. The higher fitness of atoxigenic over toxigenic counterparts at a plant non-lethal dose of 0.86 µg/g would be a useful attribute for integration in the broader biocontrol prospects of toxigenic Flavi.

5.
Front Microbiol ; 14: 1106543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065127

RESUMO

Aflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 µg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 µg/kg aflatoxin B1. Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain.

6.
Toxins (Basel) ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977101

RESUMO

Toxigenic members of Aspergillus flavus contaminate cereal grains, resulting in contamination by aflatoxin, a food safety hazard that causes hepatocellular carcinoma. This study identified probiotic strains as aflatoxin detoxifiers and investigated the changes to the grain amino acid concentrations during fermentation with probiotics in the presence of either A. flavus La 3228 (an aflatoxigenic strain) or A. flavus La 3279 (an atoxigenic strain). Generally, higher concentrations (p < 0.05) of amino acids were detected in the presence of toxigenic A. flavus La 3228 compared to the atoxigenic A. flavus La 3279. Compared to the control, 13/17 amino acids had elevated (p < 0.05) concentrations in the presence of the toxigenic A. flavus compared to the control, whereas in systems with the atoxigenic A. flavus 13/17 amino acids had similar (p > 0.05) concentrations to the control. There were interspecies and intraspecies differences in specific amino acid elevations or reductions among selected LAB and yeasts, respectively. Aflatoxins B1 and B2 were detoxified by Limosilactobacillus fermentum W310 (86% and 75%, respectively), Lactiplantibacillus plantarum M26 (62% and 63%, respectively), Candida tropicalis MY115 (60% and 77%, respectively), and Candida tropicalis YY25, (60% and 31%, respectively). Probiotics were useful detoxifiers; however, the extent of decontamination was species- and strain-dependent. Higher deviations in amino acid concentrations in the presence of toxigenic La 3228 compared to atoxigenic La 3279 suggests that the detoxifiers did not act by decreasing the metabolic activity of the toxigenic strain.


Assuntos
Aflatoxinas , Lactobacillales , Aflatoxinas/análise , Grão Comestível/química , Aminoácidos/metabolismo , Aspergillus flavus/metabolismo
7.
Front Microbiol ; 13: 1049013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504767

RESUMO

Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers' fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of active ingredients in grain, which in turn was also significantly correlated (r = -0.621, p = 0.02) with aflatoxin concentration. Although there were carry-over effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost-benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa.

8.
Mycology ; 13(2): 143-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711325

RESUMO

Application of atoxigenic strains of Aspergillus flavusto soils is the most successful aflatoxin biological control approach. The objective of this study was to evaluate the efficacies of native non-aflatoxin producing (atoxigenic) strains as a biocontrol agent in peanut field in China. The competitive atoxigenic A. flavus strains (JS4, SI1and SXN) isolated from different crops, in China were used for field evaluation. The strains applied during the growing season (June - October, 2016) in the field at rate of 25 kg inoculum/hectare. The colonization of these biocontrol agents has been investigated and the population of A. flavus communities in soil were determined. The incidences of toxin producing (toxigenic) A. flavus strains and aflatoxin contamination in peanuts were also determined. Treated plots produced significant reductions in the incidence of toxigenic isolates of A. flavus in soil. However, the total fungal densities were not significantly different (p > 0.05) after treatments. Large percentage of aflatoxin reductions, ranging from 82.8% (SXN) up to 87.2% (JS4) were recorded in treated plots. Generally, the results suggest that the strategy can be used to control aflatoxin contamination and continuous evaluation should be done.

9.
Phytopathology ; 112(10): 2084-2098, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35502929

RESUMO

The fungus Aspergillus flavus infects corn, peanut, and cottonseed, and contaminates seeds with acutely poisonous and carcinogenic aflatoxin. Aflatoxin contamination is a perennial threat in tropical and subtropical climates. Nonaflatoxin-producing isolates (atoxigenic) are deployed in fields to mitigate aflatoxin contamination. The biocontrol competitively excludes toxigenic A. flavus via direct replacement and thigmoregulated (touch) toxin inhibition mechanisms. To understand the broad-spectrum toxin inhibition, toxigenic isolates representing different mating types and sclerotia sizes were individually cocultured with different atoxigenic biocontrol isolates. To determine whether more inhibitory isolates had a competitive advantage to displace or touch inhibit toxigenic isolates, biomass accumulation rates were determined for each isolate. Finally, to determine whether atoxigenic isolates could inhibit aflatoxin production without touch, atoxigenic isolates were grown separated from a single toxigenic isolate by a membrane. Atoxigenic isolates 17, Af36, and K49 had superior abilities to inhibit toxin production. Small (<400 µm) sclerotial, Mat1-1 isolates were not as completely inhibited as others by most atoxigenic isolates. As expected for both direct replacement and touch inhibition, the fastest-growing atoxigenic isolates inhibited aflatoxin production the most, except for atoxigenic Af36 and K49. Aflatoxin production was inhibited when toxigenic and atoxigenic isolates were grown separately, especially by slow-growing atoxigenic Af36 and K49. Additionally, fungus-free filtrates from atoxigenic cultures inhibited aflatoxin production. Toxin production inhibition without direct contact revealed secretion of diffusible chemicals as an additional biocontrol mechanism. Biocontrol formulations should be improved by identifying isolates with broad-spectrum, high-inhibition capabilities and production of secreted inhibitory chemicals.


Assuntos
Aflatoxinas , Aspergillus flavus , Arachis , Aspergillus flavus/química , Óleo de Sementes de Algodão , Doenças das Plantas
10.
Toxins (Basel) ; 13(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34678973

RESUMO

Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.


Assuntos
Aflatoxinas/isolamento & purificação , Aspergillus , Contaminação de Alimentos/estatística & dados numéricos , Aflatoxinas/efeitos adversos , China , Produtos Agrícolas/microbiologia , Contaminação de Medicamentos/estatística & dados numéricos , Medicamentos de Ervas Chinesas , Contaminação de Alimentos/legislação & jurisprudência , Humanos
11.
J Fungi (Basel) ; 7(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575811

RESUMO

Aspergillus flavus is a common filamentous fungus widely present in the soil, air, and in crops. This facultative pathogen of both animals and plants produces aflatoxins, a group of mycotoxins with strong teratogenic and carcinogenic properties. Peanuts are highly susceptible to aflatoxin contamination and consumption of contaminated peanuts poses serious threats to the health of humans and domestic animals. Currently, the competitive displacement of aflatoxin-producers from agricultural environments by atoxigenic A. flavus is the most effective method of preventing crop aflatoxin contamination. In the current study, 47 isolates of A. flavus collected from peanut samples originating in Shandong Province were characterized with molecular methods and for aflatoxin-producing ability in laboratory studies. Isolates PA04 and PA10 were found to be atoxigenic members of the L strains morphotype. When co-inoculated with A. flavus NRRL3357 at ratios of 1:10, 1:1, and 10:1 (PA04/PA10: NRRL3357), both atoxigenic strains were able to reduce aflatoxin B1 (AFB1) levels, on both culture media and peanut kernels, by up to 90%. The extent to which atoxigenic strains reduced contamination was correlated with the inoculation ratio. Abilities to compete of PA04 and PA10 were also independently verified against local aflatoxin-producer PA37. The results suggest that the two identified atoxigenic strains are good candidates for active ingredients of biocontrol products for the prevention of aflatoxin contamination of peanuts in Shandong Province.

12.
Plant Dis ; 105(9): 2343-2350, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33754847

RESUMO

Aflatoxins are potent Aspergillus mycotoxins that contaminate food and feed, thereby impacting health and trade. Biopesticides with atoxigenic Aspergillus flavus isolates as active ingredients are used to reduce aflatoxin contamination in crops. The mechanism of aflatoxin biocontrol is primarily attributed to competitive exclusion but, sometimes, aflatoxin is reduced by greater amounts than can be explained by displacement of aflatoxin-producing fungi on the crop. Objectives of this study were to (i) evaluate the ability of atoxigenic A. flavus genotypes to degrade aflatoxin B1 (AFB1) and (ii) characterize impacts of temperature, time, and nutrient availability on AFB1 degradation by atoxigenic A. flavus. Aflatoxin-contaminated maize was inoculated with atoxigenic isolates in three separate experiments that included different atoxigenic genotypes, temperature, and time as variables. Atoxigenic genotypes varied in aflatoxin degradation but all degraded AFB1 >44% after 7 days at 30°C. The optimum temperature for AFB1 degradation was 25 to 30°C, which is similar to the optimum range for AFB1 production. In a time-course experiment, atoxigenics degraded 40% of AFB1 within 3 days, and 80% of aflatoxin was degraded by day 21. Atoxigenic isolates were able to degrade and utilize AFB1 as a sole carbon source in a chemically defined medium but quantities of AFB1 degraded declined as glucose concentrations increased. Degradation may be an additional mechanism through which atoxigenic A. flavus biocontrol products reduce aflatoxin contamination pre- or postharvest. Thus, selection of optimal atoxigenic active ingredients can include assessment of both competitive ability in agricultural fields and their ability to degrade aflatoxins.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxina B1 , Agentes de Controle Biológico , Zea mays
13.
Front Vet Sci ; 8: 639141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665221

RESUMO

Staphylococcus hyicus is the most common causative agent of exudative epidermitis (EE) in piglets. Staphylococcus hyicus can be grouped into toxigenic and non-toxigenic strains based on its ability to cause EE in pigs. However, the inflammatory response of piglets infected with toxigenic and non-toxigenic S. hyicus has not been elucidated. In this study, we evaluated the serum cytokine profile in piglets inoculated with toxigenic and non-toxigenic S. hyicus strains and recorded the clinical signs in piglets. Fifteen piglets were divided into three groups (n = 5) and inoculated with a toxigenic strain (ZC-4), a non-toxigenic strain (CF-1), and PBS (control), respectively. The changes in serum levels of cytokines (interleukin [IL]-1ß, IL-4, IL-6, IL-8, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor, interferon-γ, transforming growth factor-ß1, and tumor necrosis factor-α) were evaluated using a cytokine array at 6, 24, 48, and 72 h post inoculation. The results showed that piglets infected with the toxigenic strain exhibited more severe clinical signs and higher mortality than those infected with the non-toxigenic strain. The serum levels of pro-inflammatory cytokine IL-1ß were significantly increased in toxigenic-and non-toxigenic-strain-infected piglets compared to those in the control group (p < 0.05), while the anti-inflammatory cytokine IL-10 was significantly up-regulated only in toxigenic group than in control group (p < 0.05). These results indicated that piglets infected with toxigenic and non-toxigenic S. hyicus showed differential infection status and inflammatory responses. Both toxigenic- and non-toxigenic- S. hyicus infection could induce a pro-inflammatory reaction in piglets. In addition, the toxigenic strain induced a strong anti-inflammatory response in piglets as indicated by the increased serum level of IL-10, which may be associated with the severe clinical signs and increased mortality and may be the key cytokine response responsible for pathogenic mechanisms of S. hyicus.

14.
Plant Dis ; 105(6): 1657-1665, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33084543

RESUMO

The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels, conditioning their sale. Strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCAs) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCAs are labor intensive and time consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on the sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold cycle values. Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). Tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of this study will serve to design better aflatoxin management strategies for pistachio and other crops.


Assuntos
Aflatoxinas , Pistacia , Aflatoxinas/análise , Aspergillus flavus/genética , Nozes , Folhas de Planta/química , Reação em Cadeia da Polimerase em Tempo Real , Solo
15.
Plant Dis ; 105(5): 1461-1473, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33332161

RESUMO

Aflatoxin contamination is caused by Aspergillus flavus and closely related fungi. In The Gambia, aflatoxin contamination of groundnut and maize, two staple and economically important crops, is common. Groundnut and maize consumers are chronically exposed to aflatoxins, sometimes at alarming levels, and this has severe consequences on their health and productivity. Aflatoxin contamination also impedes commercialization in local and international premium markets. In neighboring Senegal, an aflatoxin biocontrol product containing four atoxigenic isolates of A. flavus, Aflasafe SN01, has been registered and is approved for commercial use in groundnut and maize. We detected that the four genotypes composing Aflasafe SN01 are also native to The Gambia. The biocontrol product was tested during two years in 129 maize and groundnut fields and compared with corresponding untreated fields cropped by smallholder farmers in The Gambia. Treated crops contained up to 100% less aflatoxins than untreated crops. A large portion of the crops could have been commercialized in premium markets due to the low aflatoxin content (in many cases no detectable aflatoxins), both at harvest and after storage. Substantial aflatoxin reductions were also achieved when commercially produced groundnut received treatment. Here we report for the first time the use and effectiveness of an aflatoxin biocontrol product registered for use in two nations. With the current scale-out and -up efforts of Aflasafe SN01, a large number of farmers, consumers, and traders in The Gambia and Senegal will obtain health, income, and trade benefits.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Aflatoxinas , Aflatoxinas/análise , Aspergillus flavus , Contaminação de Alimentos/análise , Gâmbia , Senegal
16.
Plant Dis ; 105(8): 2196-2201, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33210967

RESUMO

In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Aflatoxinas , Fumonisinas , Aflatoxinas/análise , Aspergillus flavus , Produtos Agrícolas , Zea mays
17.
Toxins (Basel) ; 12(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150883

RESUMO

Aspergillus flavus is the main producer of aflatoxin B1, one of the most toxic contaminants of food and feed. With global warming, climate conditions have become favourable for aflatoxin contamination of agricultural products in several European countries, including Serbia. The infection of maize with A. flavus, and aflatoxin synthesis can be controlled and reduced by application of a biocontrol product based on non-toxigenic strains of A. flavus. Biological control relies on competition between atoxigenic and toxigenic strains. This is the most commonly used biological control mechanism of aflatoxin contamination in maize in countries where aflatoxins pose a significant threat. Mytoolbox Af01, a native atoxigenic A. flavus strain, was obtained from maize grown in Serbia and used to produce a biocontrol product that was applied in irrigated and non-irrigated Serbian fields during 2016 and 2017. The application of this biocontrol product reduced aflatoxin levels in maize kernels (51-83%). The biocontrol treatment had a highly significant effect of reducing total aflatoxin contamination by 73%. This study showed that aflatoxin contamination control in Serbian maize can be achieved through biological control methods using atoxigenic A. flavus strains.


Assuntos
Aflatoxinas/análise , Aspergillus flavus/genética , Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Controle Biológico de Vetores/métodos , Zea mays/microbiologia , Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Sérvia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32070028

RESUMO

This review aims to update the main aspects of aflatoxin production, occurrence and incidence in selected countries, and associated aflatoxicosis outbreaks. Means to reduce aflatoxin incidence in crops were also presented, with an emphasis on the environmentally-friendly technology using atoxigenic strains of Aspergillus flavus. Aflatoxins are unavoidable widespread natural contaminants of foods and feeds with serious impacts on health, agricultural and livestock productivity, and food safety. They are secondary metabolites produced by Aspergillus species distributed on three main sections of the genus (section Flavi, section Ochraceorosei, and section Nidulantes). Poor economic status of a country exacerbates the risk and the extent of crop contamination due to faulty storage conditions that are usually suitable for mold growth and mycotoxin production: temperature of 22 to 29 °C and water activity of 0.90 to 0.99. This situation paralleled the prevalence of high liver cancer and the occasional acute aflatoxicosis episodes that have been associated with these regions. Risk assessment studies revealed that Southeast Asian (SEA) and Sub-Saharan African (SSA) countries remain at high risk and that, apart from the regulatory standards revision to be more restrictive, other actions to prevent or decontaminate crops are to be taken for adequate public health protection. Indeed, a review of publications on the incidence of aflatoxins in selected foods and feeds from countries whose crops are classically known for their highest contamination with aflatoxins, reveals that despite the intensive efforts made to reduce such an incidence, there has been no clear tendency, with the possible exception of South Africa, towards sustained improvements. Nonetheless, a global risk assessment of the new situation regarding crop contamination with aflatoxins by international organizations with the required expertise is suggested to appraise where we stand presently.


Assuntos
Aflatoxinas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Aflatoxinas/toxicidade , Carcinoma Hepatocelular/epidemiologia , Criança , Contaminação de Alimentos , Fungos , Humanos , Incidência , Índia , Quênia , Neoplasias Hepáticas/epidemiologia , Pessoa de Meia-Idade , Medição de Risco , África do Sul
19.
Front Microbiol ; 10: 2529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803149

RESUMO

Aflatoxins pose significant food security and public health risks, decrease productivity and profitability of animal industries, and hamper trade. To minimize aflatoxin contamination in several crops, a biocontrol technology based on atoxigenic strains of Aspergillus flavus is commercially used in the United States and some African countries. Significant efforts are underway to popularize the use of biocontrol in Africa by various means including incentives. The purpose of this study was to develop quantitative pyrosequencing assays for rapid, simultaneous quantification of proportions of four A. flavus biocontrol genotypes within complex populations of A. flavus associated with maize crops in Nigeria to facilitate payment of farmer incentives for Aflasafe (a biocontrol product) use. Protocols were developed to confirm use of Aflasafe by small scale farmers in Nigeria. Nested PCR amplifications followed by sequence by synthesis pyrosequencing assays were required to quantify frequencies of the active ingredients and, in so doing, confirm successful use of biocontrol by participating farmers. The entire verification process could be completed in 3-4 days proving a savings over other monitoring methods in both time and costs and providing data in a time frame that could work with the commercial agriculture scheme. Quantitative pyrosequencing assays represent a reliable tool for rapid detection, quantification, and monitoring of multiple A. flavus genotypes within complex fungal communities, satisfying the requirements of the regulatory community and crop end-users that wish to determine which purchased crops were treated with the biocontrol product. Techniques developed in the current study can be modified for monitoring other crop-associated fungi.

20.
Front Microbiol ; 10: 1788, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447810

RESUMO

A popular pre-harvest strategy to mitigate aflatoxin contamination of corn involves field application of non-aflatoxigenic strains of Aspergillus flavus. The basis of this biological control may involve multiple factors, but competitive displacement of aflatoxigenic strains by the biocontrol strains is a likely mechanism. Three biocontrol strains (NRRL 21882, 18543, and 30797) were applied annually, over a 4-year period, to the same 3.2-ha commercial corn field in the Mississippi Delta, where we monitored their post-release establishment, spread, and persistence. Within 2 months of the first biocontrol application, the percentage of soil-inhabiting aflatoxigenic A. flavus strains in some plots was reduced from 48 to 9% of the population. The frequency of aflatoxigenic A. flavus strains was also significantly reduced in the rest of field. After 4 years, neighboring plots that had never received a biocontrol treatment, and distanced from our treatment plots by at least 20 meters, had less than 20% aflatoxigenic isolates. This significant halo effect might be attributed to movement of soil through tillage operations, but the aflatoxigenicity shift could be detected in the untreated plots within 2 months of the initial applications, at a time when there was no tillage. The A. flavus populations that colonized the grain were also monitored and found to be less than 15% toxigenic in the fourth year for all treatments. Over all treatments and years, less than 2 ppb of aflatoxin was detected, which could be a consequence of the field-wide shift of the inherent A. flavus population to predominately non-aflatoxigenic strains. This study supports the efficacy of using non-aflatoxigenic A. flavus strains as pre-harvest biocontrol, and shows that most of its effectiveness occurs with the first application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA