Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Toxicol Res ; 40(1): 179-188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223675

RESUMO

Arsenic (As) is a human carcinogen widely distributed in the environment. This study evaluated the association between the urinary As concentration and single nucleotide polymorphisms (SNPs) in Korean adults to determine the genetic factors related to As concentration. The study included 496 participants for the genome-wide association study (GWAS) and 1483 participants for the candidate gene approach study. Participants were 19 years and older. The concentrations of total As (Tot As) and total As metabolites (Tmet As, the sum of inorganic As and their metabolites; arsenite, arsenate, monomethylarsonic, and dimethylarsinic acid) in the urine were analyzed. The GWAS identified four SNPs (rs1432523, rs3776006, rs11171747, and rs807573) associated with urinary Tot As and four SNPs (rs117605537, rs3776006, rs11171747, and rs148103384) significantly associated with urinary Tmet As concentration (P < 1 × 10-4). The candidate gene study identified two SNPs (PRDX2 rs10427027 and GLRX rs3822751) in genes related to the reduction reaction associated with urinary Tot As and Tmet As. This study suggests that genetic factors may play a role in regulating As metabolism in the human body, affecting both exposure levels and its potential health risks in the general Korean population, even at low exposure levels. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00216-x.

2.
Ecol Evol ; 13(11): e10727, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020694

RESUMO

Gene function conservation is crucial in molecular ecology, especially for key traits like growth and maturation in teleost fish. The vgll3 and six6 genes are known to influence age-at-maturity in Atlantic salmon, but their impact on other fish species is poorly understood. Here, we investigated the association of vgll3 and six6 in the domestication of gilthead seabream and European seabass, both undergoing selective breeding for growth-related traits in the Mediterranean. We analysed two different sets of samples using two different genotyping approaches. The first dataset comprised farmed and wild populations from Greece, genotyped for SNPs within the two genes ('gene-level genotyping'). The second dataset examined 300-600 k SNPs located in the chromosomes of the two genes, derived from a meta-analysis of a Pool-Seq experiment involving farmed and wild populations distributed widely across the Mediterranean ('chromosome-level genotyping'). The gene-level analysis revealed a statistically significant allele frequency differences between farmed and wild populations on both genes in each species. This finding was partially supported by the chromosome-level analysis, identifying highly differentiated regions may be involved in the domestication process at varying distances from the candidate genes. Noteworthy genomic features were found, such as a CpG island in gilthead seabream and novel candidate genes in European seabass, warranting further investigation. These findings support a putative role of vgll3 and six6 in the maturation and growth of gilthead seabream and European seabass, emphasizing the need for further research on their conserved function.

3.
Front Immunol ; 14: 1217206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564647

RESUMO

Background: Vaccination against severe acute respiratory syndrome coronavirus type 2 is highly effective in preventing infection and reducing the severity of coronavirus disease (COVID-19). However, acquired humoral immunity wanes within six months. Focusing on the different tempo of acquisition and attenuation of specific antibody titers in individuals, we investigated the impact of genetic polymorphisms on antibody production after COVID-19 vaccination. Methods: In total 236 healthcare workers from a Japanese municipal hospital, who received two doses of the vaccine were recruited. We employed a candidate gene approach to identify the target genetic polymorphisms affecting antibody production after vaccination. DNA samples from the study populations were genotyped for 33 polymorphisms in 15 distinct candidate genes encoding proteins involved in antigen-presenting cell activation, T cell activation, T-B interaction, and B cell survival. We measured total anti-SARS-Cov2 spike IgG antibody titers and analyzed the association with genetic polymorphisms at several time points after vaccination using an unbiased statistical method, and stepwise logistic regression following multivariate regression. Results: Significant associations were observed between seven SNPs in NLRP3, OAS1, IL12B, CTLA4, and IL4, and antibody titers at 3 weeks after the first vaccination as an initial response. Six SNPs in NLRP3, TNF, OAS1, IL12B, and CTLA4 were associated with high responders with serum antibody titer > 4000 BAU/ml as boosting effect at 3 weeks after the second vaccination. Analysis of long-term maintenance showed the significance of the three SNPs in IL12B, IL7R, and MIF for the maintenance of antibody titers and that in BAFF for attenuation of neutralizing antibodies. Finally, we proposed a predictive model composed of gene profiles to identify the individuals with rapid antibody attenuation by receiver operating characteristic (ROC) analysis (area under the curve (AUC)= 0.76, sensitivity = 82.5%, specificity=67.8%). Conclusions: The candidate gene approach successfully showed shifting responsible gene profiles and initial and boosting effect mainly related to the priming phase into antibody maintenance including B cell survival, which traces the phase of immune reactions. These gene profiles provide valuable information for further investigation of humoral immunity against COVID-19 and for building a strategy for personalized vaccine schedules.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Formação de Anticorpos/genética , Vacinas contra COVID-19 , Antígeno CTLA-4 , População do Leste Asiático , Proteína 3 que Contém Domínio de Pirina da Família NLR , COVID-19/genética , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Polimorfismo de Nucleotídeo Único
4.
Mol Biol Rep ; 50(4): 3705-3721, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642776

RESUMO

Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Gravidez , Feminino , Suínos/genética , Animais , Tamanho da Ninhada de Vivíparos/genética , Fenótipo , Locos de Características Quantitativas/genética , Variação Genética , Polimorfismo de Nucleotídeo Único/genética
5.
J Clin Med ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683627

RESUMO

Autoimmune diseases are a heterogeneous group of disorders of the immune system. They can cluster in the same individual, revealing various preferential associations for polyendocrine autoimmune syndromes. Clinical observation, together with advances in genetics and the understanding of pathophysiological processes, has further highlighted that autoimmunity can be associated with immunodeficiency; autoimmunity may even be the first primary immunodeficiency manifestation. Analysis of susceptibility genes for the development of these complex phenotypes is a fundamental issue. In this manuscript, we revised the clinical and immunologic features and the presence of AIRE gene variations in a cohort of 48 patients affected by high polyautoimmunity complexity, i.e., APECED-like conditions, also including patients affected by primary immunodeficiency. Our results evidenced a significant association of the S278R polymorphism of the AIRE gene with APECED-like conditions, including both patients affected by autoimmunity and immunodeficiency and patients with polyautoimmunity compared to healthy controls. A trend of association was also observed with the IVS9+6 G>A polymorphism. The results of this genetic analysis emphasize the need to look for additional genetic determinants playing in concert with AIRE polymorphisms. This will help to improve the diagnostic workup and ensure a precision medicine approach to targeted therapies in APECED-like patients.

6.
Front Genet ; 13: 1032601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685944

RESUMO

Wheat is the most important source of food, feed, and nutrition for humans and livestock around the world. The expanding population has increasing demands for various wheat products with different quality attributes requiring the development of wheat cultivars that fulfills specific demands of end-users including millers and bakers in the international market. Therefore, wheat breeding programs continually strive to meet these quality standards by screening their improved breeding lines every year. However, the direct measurement of various end-use quality traits such as milling and baking qualities requires a large quantity of grain, traits-specific expensive instruments, time, and an expert workforce which limits the screening process. With the advancement of sequencing technologies, the study of the entire plant genome is possible, and genetic mapping techniques such as quantitative trait locus mapping and genome-wide association studies have enabled researchers to identify loci/genes associated with various end-use quality traits in wheat. Modern breeding techniques such as marker-assisted selection and genomic selection allow the utilization of these genomic resources for the prediction of quality attributes with high accuracy and efficiency which speeds up crop improvement and cultivar development endeavors. In addition, the candidate gene approach through functional as well as comparative genomics has facilitated the translation of the genomic information from several crop species including wild relatives to wheat. This review discusses the various end-use quality traits of wheat, their genetic control mechanisms, the use of genetics and genomics approaches for their improvement, and future challenges and opportunities for wheat breeding.

7.
Crit Care Explor ; 3(11): e0576, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765983

RESUMO

The pathology caused by the coronavirus disease 2019 is mediated by host-mediated lung inflammation, driving severity, and mortality. Polymorphisms in genes encoding host inflammation and immune-related molecules may be associated with the development of serious pathologies, and identifying such gene polymorphisms may lead to the identification of therapeutic targets. OBJECTIVES: We attempted to identify aggravation-predicting gene polymorphisms. DESIGN: We use a candidate gene approach associated with multiple phase pathogenesis in coronavirus disease 2019 patients among a cohort in Hiroshima, a city with a population of 1 million, in Japan. DNA samples from the study populations were genotyped for 34 functional polymorphisms from 14 distinct candidate genes, which encode proteins related to viral cell entry, regulation of viral replication, innate immune modulators, regulatory cytokines, and effector cytokines. SETTING AND PARTICIPANTS: Three core hospitals providing different services for patients with coronavirus disease 2019 under administrative control. A total of 230 patients with coronavirus disease 2019 were recruited from March 1, 2020, to March 31, 2021. MAIN RESULTS AND MEASUREMENTS: Among the 14 genes, we found rs1131454 in OAS1 and rs1143627 in IL1B genes as independent genetic factors associated with disease severity (adjusted odds ratio = 7.1 and 4.6 in the dominant model, respectively). Furthermore, we investigated the effect of multiple phase pathogenesis of coronavirus disease 2019 with unbiased multifactor dimensionality reduction analysis and identified a four-gene model with rs1131454 (OAS1), rs1143627 (IL1B), rs2074192 (ACE2), and rs11003125 (MBL). By combining these polygenetic factors with polyclinical factors, including age, sex, higher body mass index, and the presence of diabetes and hypertension, we proposed a composite risk model with a high area under the curve, sensitivity, and probability (0.917, 96.4%, and 74.3%, respectively) in the receiver operating characteristic curve analysis. CONCLUSIONS AND RELEVANCE: We successfully identified significant genetic factors in OAS1 and IL1B genes using a candidate gene approach study as valuable information for further mechanistic investigation and predictive model building.

8.
Cancers (Basel) ; 13(18)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572825

RESUMO

BACKGROUND: Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS: CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS: Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.

9.
Front Endocrinol (Lausanne) ; 12: 682625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149620

RESUMO

A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic ß-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.


Assuntos
Diabetes Mellitus/genética , Edição de Genes , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Animais , Estudo de Associação Genômica Ampla , Humanos
10.
Genes (Basel) ; 12(4)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921270

RESUMO

Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.


Assuntos
Phaseolus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Aclimatação , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , México , Phaseolus/classificação , Phaseolus/genética , Estresse Fisiológico , Estados Unidos
11.
J Genet Eng Biotechnol ; 19(1): 34, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619637

RESUMO

BACKGROUND: Interrelationship between growth habit and flowering played a key role in the domestication history of pulses; however, the actual genes responsible for these traits have not been identified in Indian bean. Determinate growth habit is desirable due to its early flowering, photo-insensitivity, synchronous pod maturity, ease in manual harvesting and short crop duration. The present study aimed to identify, characterize and validate the gene responsible for growth habit by using a candidate gene approach coupled with sequencing, multiple sequence alignment, protein structure prediction and binding pocket analysis. RESULTS: Terminal flowering locus was amplified from GPKH 120 (indeterminate) and GNIB-21 (determinate) using the primers designed from PvTFL1y locus of common bean. Gene prediction revealed that the length of the third and fourth exons differed between the two alleles. Allelic sequence comparison indicated a transition from guanine to adenine at the end of the third exon in GNIB 21. This splice site single-nucleotide polymorphism (SNP) was validated in germplasm lines by sequencing. Protein structure analysis indicated involvement of two binding pockets for interaction of terminal flowering locus (TFL) protein with other proteins. CONCLUSION: The splice site SNP present at the end of the third exon of TFL locus is responsible for the transformation of shoot apical meristem into a reproductive fate in the determinate genotype GNIB 21. The splice site SNP leads to absence of 14 amino acids in mutant TFL protein of GNIB 21, rendering the protein non-functional. This deletion disturbed previously reported anion-binding pocket and secondary binding pocket due to displacement of small ß-sheet away from an external loop. This finding may enable the modulation of growth habit in Indian bean and other pulse crops through genome editing.

12.
Pharmgenomics Pers Med ; 14: 61-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469342

RESUMO

Pharmacogenomics has been used effectively in studying adverse drug reactions by determining the person-specific genetic factors associated with individual response to a drug. Current approaches have revealed the significant importance of sequencing technologies and sequence analysis strategies for interpreting the contribution of genetic variation in developing adverse reactions. Advance in next generation sequencing and platform brings new opportunities in validating the genetic candidates in certain reactions, and could be used to develop the preemptive tests to predict the outcome of the variation in a personal response to a drug. With the highly accumulated available data recently, the in silico approach with data analysis and modeling plays as other important alternatives which significantly support the final decisions in the transformation from research to clinical applications such as diagnosis and treatments for various types of adverse responses.

13.
Clin Endocrinol (Oxf) ; 94(2): 277-289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098107

RESUMO

CONTEXT: The international GENHYPOPIT network collects phenotypical data and screens genetic causes of non-acquired hypopituitarism. AIMS: To describe main phenotype patterns and their evolution through life. DESIGN: Patients were screened according to their phenotype for coding sequence variations in 8 genes: HESX1, LHX3, LHX4, PROP1, POU1F1, TBX19, OTX2 and PROKR2. RESULTS: Among 1213 patients (1143 index cases), the age of diagnosis of hypopituitarism was congenital (24%), in childhood (28%), at puberty (32%), in adulthood (7.2%) or not available (8.8%). Noteworthy, pituitary hormonal deficiencies kept on evolving during adulthood in 49 of patients. Growth Hormone deficiency (GHD) affected 85.8% of patients and was often the first diagnosed deficiency. AdrenoCorticoTropic Hormone deficiency rarely preceded GHD, but usually followed it by over 10 years. Pituitary Magnetic Resonance Imaging (MRI) abnormalities were common (79.7%), with 39.4% pituitary stalk interruption syndrome (PSIS). The most frequently associated extrapituitary malformations were ophthalmological abnormalities (16.1%). Prevalence of identified mutations was 7.3% of index cases (84/1143) and 29.5% in familial cases (n = 146). Genetic analysis in 449 patients without extrapituitary phenotype revealed 36 PROP1, 2 POU1F1 and 17 TBX19 mutations. CONCLUSION: This large international cohort highlights atypical phenotypic presentation of constitutional hypopituitarism, such as post pubertal presentation or adult progression of hormonal deficiencies. These results justify long-term follow-up, and the need for systematic evaluation of associated abnormalities. Genetic defects were rarely identified, mainly PROP1 mutations in pure endocrine phenotypes.


Assuntos
Hipopituitarismo , Adulto , Estudos de Coortes , Proteínas de Homeodomínio/genética , Humanos , Hipopituitarismo/genética , Imageamento por Ressonância Magnética , Mutação , Fatores de Transcrição/genética
14.
Anim Genet ; 50(3): 207-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30937948

RESUMO

Water buffalo (Bubalus bubalis) is of great economic importance as a provider of milk and meat in many countries. However, the milk yield of buffalo is much lower than that of Holstein cows. Selection of candidate genes related to milk production traits can be applied to improve buffalo milk performance. A systematic review of studies of these candidate genes will be greatly beneficial for researchers to timely and efficiently understand the research development of molecular markers for buffalo milk production traits. Here, we identified and classified the candidate genes associated with buffalo milk production traits. A total of 517 candidate genes have been identified as being associated with milk performance in different buffalo breeds. Nineteen candidate genes containing 47 mutation sites have been identified using the candidate gene approach. In addition, 499 candidate genes have been identified in six genome-wide association studies (GWASes) including two studies performed with the bovine SNP chip and four studies with the buffalo SNP chip. Genes CTNND2 (catenin delta 2), APOB (apolipoprotein B), FHIT (fragile histidine triad) and ESRRG (estrogen related receptor gamma) were identified in at least two GWASes. These four genes, especially APOB, deserve further study to explore regulatory roles in buffalo milk production. With growth in the number of buffalo genomic studies, more candidate genes associated with buffalo milk production traits will be identified. Therefore, future studies, such as those investigating gene location and functional analyses, are necessary to facilitate the exploitation of genetic potential and the improvement of buffalo milk performance.


Assuntos
Búfalos/genética , Leite , Animais , Búfalos/classificação , Búfalos/fisiologia , Cromossomos de Mamíferos , Estudo de Associação Genômica Ampla , Gado/classificação , Gado/genética , Gado/fisiologia , Leite/química
15.
Genes (Basel) ; 9(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257524

RESUMO

CFH and HTRA1 genes are traditional markers of increased risk of age-related macular degeneration (AMD) across populations. Recent findings suggest that additional genes-for instance, in the dystrophin-associated protein complex-might be promising markers for AMD. Here, we performed a case-control study to assess the effect of SGCD single nucleotide polymorphisms (SNPs), a member of this protein family, on AMD diagnosis and phenotype. We performed a case-control study of an under-studied population from Hispanics in Mexico City, with 134 cases with 134 unpaired controls. Cases were 60 years or older (Clinical Age-Related Maculopathy Staging (CARMS) grade 4⁻5, as assessed by experienced ophthalmologists following the American Association of Ophthalmology (AAO) guidelines), without other retinal disease or history of vitreous-retinal surgery. Controls were outpatients aged 60 years or older, with no drusen or retinal pigment epithelium (RPE) changes on a fundus exam and a negative family history of AMD. We examined SNPs in the SGCD gene (rs931798, rs140617, rs140616, and rs970476) by sequencing and real-time PCR. Genotyping quality checks and univariate analyses were performed with PLINK v1.90b3.42. Furthermore, logistic regression models were done in SAS v.9.4 and haplotype configurations in R v.3.3.1. After adjusting for clinical covariates, the G/A genotype of the SGCD gene (rs931798) significantly increases the odds of being diagnosed with AMD in 81% of cases (1.81; 95% CI 1.06⁻3.14; p = 0.031), especially the geographic atrophy phenotype (1.82; 95% CI 1.03⁻3.21; p = 0.038) compared to the G/G homozygous genotype. Moreover, the GATT haplotype in this gene (rs931798, rs140617, rs140616, and rs970476) is associated with lower odds of AMD (adjusted odds ratio (OR) 0.13; 95% CI 0.02⁻0.91; p = 0.041). SGCD is a promising gene for AMD research. Further corroboration in other populations is warranted, especially among other Hispanic ethnicities.

16.
Gastroenterology ; 154(8): 2165-2177, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501442

RESUMO

BACKGROUND & AIMS: A few rare monogenic primary immunodeficiencies (PIDs) are characterized by chronic intestinal inflammation that resembles Crohn's disease (CD). We investigated whether 23 genes associated with 10 of these monogenic disorders contain common, low-frequency, or rare variants that increase risk for CD. METHODS: Common and low frequency variants in 1 Mb loci centered on the candidate genes were analyzed using meta-data corresponding to genotypes of approximately 17,000 patients with CD or without CD (controls) in Europe. The contribution of rare variants was assessed by high-throughput sequencing of 4750 individuals, including 660 early-onset and/or familial cases among the 2390 patients with CD. Variants were expressed from vectors in SW480 or HeLa cells and functions of their products were analyzed in immunofluorescence, luciferase, immunoprecipitation, and immunoblot assays. RESULTS: We reproduced the association of the interleukin 10 locus with CD (P = .007), although none of the significantly associated variants modified the coding sequence of interleukin 10. We found XIAP to be significantly enriched for rare coding mutations in patients with CD vs controls (P = .02). We identified 4 previously unreported missense variants associated with CD. Variants in XIAP cause the PID X-linked lymphoproliferative disease type 2, yet none of the carriers of these variants had all the clinical features of X-linked lymphoproliferative disease type 2. Identified XIAP variants S123N, R233Q, and P257A were associated with an impaired activation of NOD2 signaling after muramyl dipeptide stimulation. CONCLUSIONS: In a systematic analysis of variants in 23 PID-associated genes, we confirmed the association of variants in XIAP with CD. Further screenings for CD-associated variants and analyses of their functions could increase our understanding of the relationship between PID-associated genes and CD pathogenesis.


Assuntos
Doença de Crohn/genética , Síndromes de Imunodeficiência/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bélgica , Células Cultivadas , Criança , Pré-Escolar , Doença de Crohn/sangue , Doença de Crohn/imunologia , Feminino , Imunofluorescência , França , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/imunologia , Interleucina-10/genética , Masculino , Pessoa de Meia-Idade , Monócitos , Mutação de Sentido Incorreto , Proteína Adaptadora de Sinalização NOD2/metabolismo , Cultura Primária de Células , Análise de Sequência de DNA , Transdução de Sinais/genética , Adulto Jovem
17.
Curr Drug Metab ; 19(14): 1188-1198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29380695

RESUMO

BACKGROUND: Asthma is one of the most significant diseases worldwide and causes overwhelming costs physically and economically. The study of asthma has revealed various groups of asthma patients who share phenotypic characteristics that naturally elicit the need for personalized asthma therapy. An increasing amount of pharmacogenetics research, genotype-based trials and precision medicine trials have been conducted to investigate this problem. METHODS: A systematic bibliography retrieval was performed in MEDLINE (Ovid) and PubMed for our topic and all relative records were exported and screened. RESULTS: We identified 377 publications and added 4 articles related to this topic artificially to reach a bigger scope, of which 36 met the inclusion criteria. Our review focuses on the three most widely used treatments for asthma management, which are ß-adrenergic receptor agonists, inhaled corticosteroids (ICS) and anti-leukotriene modifiers. We summarize the existing loci reported in the literature that are potentially associated with drug responses to typically used medications. CONCLUSION: Our results suggest that a genetic test with high predictive accuracy could predict therapeutic responses, and proper management can be achieved in asthma patients. This personalized approach to curative medicine should make way for the realization of personalized preventive and predictive medicine in the coming years.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Humanos , Variantes Farmacogenômicos , Guias de Prática Clínica como Assunto , Medicina de Precisão
18.
Mol Ecol ; 27(2): 387-402, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220109

RESUMO

The complex interplay of forces influencing genetic divergence among populations complicates the discovery of the genetic basis underlying local adaptation. Here, we utilized for the first time a combined reverse ecology and population transcriptomic approach to assess the contribution of thermal selection to population differentiation, thereby considering transcriptome-wide variation in both gene expression profiles and DNA sequences. We compared transcriptomes among four Daphnia galeata populations and identified transcripts potentially responding to local thermal selection based on an extensive literature search for candidate genes possibly under thermal selection in arthropods. Over-representation of temperature-relevant candidate genes among transcripts strongly contributing to sequence divergence among two populations indicates that local thermal selection acted on the coding sequence level. We identified a large number of transcripts, which may contribute to local thermal adaptation based on outlier tests and distinctive expression profiles. However, among these, temperature-relevant candidate genes were not over-represented compared to the global gene set, suggesting that thermal selection played a minor role in divergence among Daphnia populations. Interestingly, although the majority of genes contributing strongly to sequence divergence did not contribute strongly to divergence at the expression level and vice versa, the affected gene functions were largely consistent between the two data sets. This suggests that genetic and regulatory variation constitutes alternative routes for responses to natural selection. Our combined utilization of a population transcriptomics approach and literature-based identification of ecologically informative candidate genes represents a useful and powerful methodology with a wide range of applications in evolutionary biology.


Assuntos
Daphnia/genética , Genética Populacional , Seleção Genética/genética , Transcriptoma/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Deriva Genética , Repetições de Microssatélites/genética
19.
Plant Biotechnol J ; 15(9): 1149-1162, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28176454

RESUMO

Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Pinus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Transcriptoma , Cruzamento , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Ontologia Genética , Ligação Genética , Loci Gênicos/genética , Genótipo , Pinus/imunologia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Sementes/imunologia , Sementes/microbiologia
20.
Hum Genomics ; 10(1): 39, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894333

RESUMO

BACKGROUND: Head-and-neck squamous cell carcinoma (HNSCC) differs between smokers and nonsmokers in etiology and clinical presentation. Because of demonstrated unequivocal involvement in smoking-induced cancer in laboratory animals, four candidate genes--AHR, CYP1A1, CYP1A2, and CYP1B1--were selected for a clinical genotype-phenotype association study of HNSCC risk in smokers. Thirty-six single-nucleotide variants (mostly tag-SNPs) within and near these four genes [16 (AHR), 4 (CYP1A1), 4 (CYP1A2), and 12 (CYP1B1)] were chosen. METHODS: Extreme discordant phenotype (EDP) method of analysis was used to increase statistical power. HNSCC patients--having smoked 1-40 cigarette pack-years--represented the "highly-sensitive" (HS) population; heavy smokers having smoked ≥80 cigarette-pack-years without any type of cancer comprised the "highly-resistant" (HR) group. The vast majority of smokers were intermediate and discarded from consideration. Statistical tests were performed on N = 112 HS and N = 99 HR DNA samples from whole blood. CONCLUSIONS: Among the four genes and flanking regions--one haploblock, ACTTGATC in the 5' portion of CYP1B1, retained statistical significance after 100,000 permutations (P = 0.0042); among our study population, this haploblock was found in 36.4% of African-American, but only 1.49% of Caucasian, HNSCC chromosomes. Interestingly, in the 1000 Genomes Project database, frequency of this haplotype (in 1322 African and 1006 Caucasian chromosomes) is 0.356 and 0.003, respectively. This study represents an excellent example of "spurious association by population stratification". Considering the cohort size, we therefore conclude that the variant alleles chosen for these four genes, alone or in combinations, are not statistically significantly associated with risk of cigarette-smoking-induced HNSCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Escamosas/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1B1/genética , Neoplasias de Cabeça e Pescoço/genética , Receptores de Hidrocarboneto Arílico/genética , Estudos de Casos e Controles , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA