Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Mol Med ; 30(1): 100, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992588

RESUMO

BACKGROUND: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.


Assuntos
Proteínas Quinases Ativadas por AMP , Clusterina , Metilação de DNA , Diabetes Mellitus Experimental , Ferroptose , Regiões Promotoras Genéticas , Transdução de Sinais , Testículo , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicações , DNA Metiltransferase 3A/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ferroptose/genética , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Testículo/patologia
2.
Methods Mol Biol ; 2816: 145-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977596

RESUMO

Clusterin, also known as apolipoprotein J, is an ATP-independent holdase chaperone protein. Clusterin is involved in various functions including protein quality control and lipid transport. Though clusterin is secreted upon stress, the intracellular fate of clusterin after a stress response is not well understood. The protocol described here utilizes clusterin tagged to fluorescent proteins like green fluorescent protein and red fluorescent protein to understand the intracellular fate of clusterin.


Assuntos
Clusterina , Microscopia Confocal , Clusterina/metabolismo , Humanos , Microscopia Confocal/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteína Vermelha Fluorescente , Animais
3.
Int Immunopharmacol ; 137: 112355, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851158

RESUMO

One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.


Assuntos
Clusterina , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Clusterina/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Animais , Microambiente Tumoral/imunologia
4.
Antibiotics (Basel) ; 13(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927196

RESUMO

In this study, we assessed the impact of commercially available polymyxin B against VRP-034 (novel formulation of polymyxin B) using a validated in vitro human renal model, aProximateTM. Freshly isolated primary proximal tubule cells (PTCs) were cultured in Transwell plates and treated with various concentrations of the formulations for up to 48 h. The functional expression of megalin-cubilin receptors in PTC monolayers was validated using FITC-conjugated albumin uptake assays. Polymyxin B and VRP-034 were evaluated at six concentrations (0.3, 1, 3, 10, 30, and 60 µM), and nephrotoxicity was assessed through measurements of transepithelial electrical resistance (TEER), intracellular adenosine triphosphate (ATP) levels, lactate dehydrogenase (LDH) release, and novel injury biomarkers [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and clusterin]. Additionally, histological analysis using annexin V apoptosis staining was performed. Our results indicated a significant decrease in TEER with polymyxin B at concentrations ≥10 µM compared to VRP-034. Toxic effects were observed from ATP and LDH release only at concentrations ≥30 µM for both formulations. Furthermore, injury biomarker release was higher with polymyxin B compared to VRP-034, particularly at concentrations ≥10 µM. Histologically, polymyxin B-treated PTCs showed increased apoptosis compared to VRP-034-treated cells. Overall, VRP-034 demonstrated improved tolerance in the aProximateTM model compared to polymyxin B, suggesting its potential as a safer alternative for renal protection.

5.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853911

RESUMO

Background: White matter loss is a well-documented phenomenon in Alzheimer's disease (AD) patients that has been recognized for decades. However, the underlying reasons for the failure of oligodendrocyte progenitor cells (OPCs) to repair myelin deficits in these patients remain elusive. A single nucleotide polymorphism (SNP) in Clusterin has been identified as a risk factor for late-onset Alzheimer's disease and linked to a decrease in white matter integrity in healthy adults, but its specific role in oligodendrocyte function and myelin maintenance in Alzheimer's disease pathology remains unclear. Methods: To investigate the impact of Clusterin on OPCs in the context of Alzheimer's disease, we employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results: Our findings demonstrate that Clusterin, a risk factor for late-onset AD, is produced by OPCs and inhibits their differentiation into oligodendrocytes. Specifically, we observed upregulation of Clusterin in OPCs in the 5xFAD mouse model of AD. We also found that the phagocytosis of debris, including amyloid beta (Aß), myelin, and apoptotic cells leads to the upregulation of Clusterin in OPCs. In vivo experiments confirmed that Aß oligomers stimulate Clusterin upregulation and that OPCs are capable of phagocytosing Aß. Furthermore, we discovered that Clusterin significantly inhibits OPC differentiation and hinders the production of myelin proteins. Finally, we demonstrate that Clusterin inhibits OPC differentiation by reducing the production of IL-9 by OPCs. Conclusion: Our data suggest that Clusterin may play a key role in the impaired myelin repair observed in AD and could serve as a promising therapeutic target for addressing AD-associated cognitive decline.

6.
Vet Sci ; 11(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38787172

RESUMO

Novel biomarkers are needed in diagnosing reliably acute kidney injury (AKI) in dogs and in predicting morbidity and mortality after AKI. Our hypothesis was that two novel tubular biomarkers, urinary clusterin (uClust) and cystatin B (uCysB), are elevated in dogs with AKI of different etiologies. In a prospective, longitudinal observational study, we collected serum and urine samples from 18 dogs with AKI of different severity and of various etiology and from 10 healthy control dogs. Urinary clusterin and uCysB were compared at inclusion between dogs with AKI and healthy controls and remeasured one and three months later. Dogs with AKI had higher initial levels of uClust (median 3593 ng/mL; interquartile range [IQR]; 1489-10,483) and uCysB (554 ng/mL; 29-821) compared to healthy dogs (70 ng/mL; 70-70 and 15 ng/mL; 15-15; p < 0.001, respectively). Initial uCysB were higher in dogs that died during the one-month follow-up period (n = 10) (731 ng/mL; 517-940), compared to survivors (n = 8) (25 ng/mL; 15-417 (p = 0.009). Based on these results, uClust and especially uCysB are promising biomarkers of AKI. Further, they might reflect the severity of tubular injury, which is known to be central to the pathology of AKI.

7.
Cells ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667280

RESUMO

Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.


Assuntos
Clusterina , Neoplasias , Clusterina/metabolismo , Clusterina/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Apoptose/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673784

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Glycoprotein clusterin (CLU) has many functions such as phagocyte recruitment, complement system inhibition, apoptosis inhibition, hormone and lipid transport, as well as in the immune response. The study aimed to assess the changes in CLU concentrations and the profile and degree of CLU glycosylation between patients with severe COVID-19, convalescents, and healthy subjects (control). The profile and degree of serum CLU N-glycosylation were analyzed using lectin-ELISA with specific lectins. CLU concentrations were significantly lower and relative reactivities of CLU glycans with SNA (Sambucus nigra agglutinin) were significantly higher in severe COVID-19 patients in comparison to convalescents and the control group. The relative reactivities of CLU glycans with MAA (Maackia amurensis agglutinin), together with relative reactivity with LCA (Lens culinaris agglutinin), were also significantly higher in patients with severe COVID-19 than in convalescents and the control group, but they also significantly differed between convalescents and control. The development of acute inflammation in the course of severe COVID-19 is associated with a decrease in CLU concentration, accompanied by an increase in the expression of α2,3-linked sialic acid, and core fucose. Both of these parameters can be included as useful glycomarkers differentiating patients with severe COVID-19 from convalescents and the control group, as well as convalescents and healthy subjects.


Assuntos
Biomarcadores , COVID-19 , Clusterina , SARS-CoV-2 , Feminino , Humanos , Masculino , Biomarcadores/sangue , Clusterina/sangue , COVID-19/sangue , COVID-19/diagnóstico , Glicosilação , Lectinas/sangue
9.
Autophagy ; 20(6): 1359-1382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447939

RESUMO

Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.


Assuntos
Sobrevivência Celular , Clusterina , Mitocôndrias , Mitofagia , Neoplasias Bucais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Humanos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Clusterina/metabolismo , Clusterina/genética , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Biogênese de Organelas , Camundongos , Apoptose/efeitos dos fármacos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Autofagia/efeitos dos fármacos
10.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542375

RESUMO

The review describes correlations between impaired functioning of chaperones and co-chaperones in Alzheimer's disease (AD) pathogenesis. The study aims to highlight significant lines of research in this field. Chaperones like Hsp90 or Hsp70 are critical agents in regulating cell homeostasis. Due to some conditions, like aging, their activity is damaged, resulting in ß-amyloid and tau aggregation. This leads to the development of neurocognitive impairment. Dysregulation of co-chaperones is one of the causes of this condition. Disorders in the functioning of molecules like PP5, Cdc37, CacyBP/SIPTRAP1, CHIP protein, FKBP52, or STIP1 play a key role in AD pathogenesis. PP5, Cdc37, CacyBP/SIPTRAP1, and FKBP52 are Hsp90 co-chaperones. CHIP protein is a co-chaperone that switches Hsp70/Hsp90 complexes, and STIP1 binds to Hsp70. Recognition of precise processes allows for the invention of effective treatment methods. Potential drugs may either reduce tau levels or inhibit tau accumulation and aggregation. Some substances neuroprotect from Aß toxicity. Further studies on chaperones and co-chaperones are required to understand the fundamental tenets of this topic more entirely and improve the prevention and treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70 , Peptídeos beta-Amiloides
11.
Neuro Oncol ; 26(7): 1262-1279, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416702

RESUMO

BACKGROUND: Meningioma is the most common primary intracranial tumor with a high frequency of postoperative recurrence, yet the biology of the meningioma malignancy process is still obscure. METHODS: To identify potential therapeutic targets and tumor suppressors, we performed single-cell transcriptome analysis through meningioma malignancy, which included 18 samples spanning normal meninges, benign and high-grade in situ tumors, and lung metastases, for extensive transcriptome characterization. Tumor suppressor candidate gene and molecular mechanism were functionally validated at the animal model and cellular levels. RESULTS: Comprehensive analysis and validation in mice and clinical cohorts indicated clusterin (CLU) had suppressive function for meningioma tumorigenesis and malignancy by inducing mitochondria damage and triggering type 1 interferon pathway dependent on its secreted isoform, and the inhibition effect was enhanced by TNFα as TNFα also induced type 1 interferon pathway. Meanwhile, both intra- and extracellular CLU overexpression enhanced macrophage polarization towards M1 phenotype and TNFα production, thus promoting tumor killing and phagocytosis. CONCLUSIONS: CLU might be a key brake of meningioma malignance by synchronously modulating tumor cells and their microenvironment. Our work provides comprehensive insights into meningioma malignancy and a potential therapeutic strategy.


Assuntos
Clusterina , Macrófagos , Neoplasias Meníngeas , Meningioma , Clusterina/metabolismo , Clusterina/genética , Meningioma/patologia , Meningioma/metabolismo , Animais , Humanos , Camundongos , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Carcinogênese/metabolismo , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Células Tumorais Cultivadas , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
12.
Front Immunol ; 15: 1330095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333209

RESUMO

Introduction: The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods: To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum­purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size­exclusion chromatography. Results: Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion: Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.


Assuntos
Clusterina , Complemento C7 , Complemento C7/metabolismo , Proteínas do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento
13.
Diagnostics (Basel) ; 14(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38396489

RESUMO

Inflammation plays a crucial role in diabetes and obesity through macrophage activation. Macrophage chemoattractant protein-1 (MCP-1), activin-A, and clusterin are chemokines with known roles in diabetes and obesity. The aim of this study is to investigate their possible diagnostic and/or early prognostic values in children and adolescents with obesity and type-1 diabetes mellitus (T1DM). METHODS: We obtained serum samples from children and adolescents with a history of T1DM or obesity, in order to measure and compare MCP-1, activin-A, and clusterin concentrations. RESULTS: Forty-three subjects were included in each of the three groups (controls, T1DM, and obesity). MCP-1 values were positively correlated to BMI z-score. Activin-A was increased in children with obesity compared to the control group. A trend for higher values was detected in children with T1DM. MCP-1 and activin-A levels were positively correlated. Clusterin levels showed a trend towards lower values in children with T1DM or obesity compared to the control group and were negatively correlated to renal function. CONCLUSIONS: The inflammation markers MCP-1, activin-A, and clusterin are not altered in children with T1DM. Conversely, obesity in children is positively correlated to serum MCP-1 values and characterized by higher activin-A levels, which may reflect an already established systematic inflammation with obesity since childhood.

14.
Endocr Connect ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251963

RESUMO

The aim of the study was to investigate the changes in serum glypican 4 (GPC4) and clusterin (CLU) levels in patients with polycystic ovary syndrome (PCOS) as well as their correlation with sex hormones and metabolic parameters. A total of 40 PCOS patients and 40 age-matched healthy women were selected. Serum GPC4 and CLU levels were compared between the PCOS and control groups, and binary logistic regression was used to analyze the relative risk of PCOS at different tertiles of serum GPC4 and CLU concentrations. Stepwise linear regression was used to identify the factors influencing serum GPC4 and CLU levels in PCOS patients. Serum GPC4 (1.82 ± 0.49 vs 1.30 ± 0.61 ng/mL, P < 0.001) and CLU (468.79 ± 92.85 vs 228.59 ± 82.42 µg/mL, P < 0.001) were significantly higher in PCOS patients than in healthy women after adjustment for body mass index (BMI). In the PCOS group, serum GPC4 was positively correlated with follicle-stimulating hormone, fasting plasma glucose (FPG), fasting insulin (FINS), homeostatic model assessment of insulin resistance (HOMA-IR), triglyceride, and CLU (P < 0.05), whereas serum CLU was positively correlated with BMI, FPG, FINS, and HOMA-IR (P < 0.05). Multiple stepwise linear regression analysis showed that HOMA-IR was independently associated with serum GPC4, and BMI and HOMA-IR were independently associated with CLU (P < 0.05). Serum GPC4 and CLU levels were significantly higher in PCOS patients than in healthy women, suggesting that GPC4 and CLU may be markers associated with insulin resistance in women with PCOS.

15.
Oncoimmunology ; 13(1): 2294564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125724

RESUMO

Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.


Assuntos
Clusterina , Neoplasias , Humanos , Morte Celular , Clusterina/genética , Clusterina/metabolismo , Células Dendríticas , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T
16.
Front Aging Neurosci ; 15: 1256389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941999

RESUMO

Background: Clusterin, a glycoprotein implicated in Alzheimer's disease (AD), remains unclear. The objective of this study was to analyze the effect of cerebrospinal fluid (CSF) clusterin in relation to AD biomarkers using a longitudinal cohort of non-demented individuals. Methods: We gathered a sample comprising 86 individuals under cognition normal (CN) and 134 patients diagnosed with MCI via the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. To investigate the correlation of CSF clusterin with cognitive function and markers of key physiological changes, we employed multiple linear regression and mixed-effect models. We undertook a causal mediation analysis to inspect the mediating influence of CSF clusterin on cognitive abilities. Results: Pathological characteristics associated with baseline Aß42, Tau, brain volume, exhibited a correlation with initial CSF clusterin in the general population, Specifically, these correlations were especially prominent in the MCI population; CSF Aß42 (PCN = 0.001; PMCI = 0.007), T-tau (PCN < 0.001; PMCI < 0.001), and Mid temporal (PCN = 0.033; PMCI = 0.005). Baseline CSF clusterin level was predictive of measurable cognitive shifts in the MCI population, as indicated by MMSE (ß = 0.202, p = 0.029), MEM (ß = 0.186, p = 0.036), RAVLT immediate recall (ß = 0.182, p = 0.038), and EF scores (ß = 0.221, p = 0.013). In MCI population, the alterations in brain regions (17.87% of the total effect) mediated the effect of clusterin on cognition. It was found that variables such as age, gender, and presence of APOE ε4 carrier status, influenced some of these connections. Conclusion: Our investigation underscored a correlation between CSF clusterin concentrations and pivotal AD indicators, while also highlighting clusterin's potential role as a protective factor for cognitive abilities in MCI patients.

17.
Mol Neurobiol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017342

RESUMO

In recent years, Clusterin, a glycosylated protein with multiple biological functions, has attracted extensive research attention. It is closely associated with the physiological and pathological states within the organism. Particularly in Alzheimer's disease (AD) research, Clusterin plays a significant role in the disease's occurrence and progression. Numerous studies have demonstrated a close association between Clusterin and AD. Firstly, the expression level of Clusterin in the brain tissue of AD patients is closely related to pathological progression. Secondly, Clusterin is involved in the deposition and formation of ß-amyloid, which is a crucial process in AD development. Furthermore, Clusterin may affect the pathogenesis of AD through mechanisms such as regulating inflammation, controlling cell apoptosis, and clearing pathological proteins. Therefore, further research on the relationship between Clusterin and AD will contribute to a deeper understanding of the etiology of this neurodegenerative disease and provide a theoretical basis for developing early diagnostic and therapeutic strategies for AD. This also makes Clusterin one of the research focuses as a potential biomarker for AD diagnosis and treatment monitoring.

18.
Neurosci Lett ; 817: 137532, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37866702

RESUMO

Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aß) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aß, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid ß peptides production, especially the further form of amyloidogenic known as Aß42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the ß-amyloid oligomers and fibrils formation, which are associated with the ß-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase , Precursor de Proteína beta-Amiloide/genética , Presenilina-1 , Apolipoproteínas E/genética
19.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834086

RESUMO

Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Clusterina/genética , Clusterina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Colorretais/genética , Carcinogênese
20.
Cell Rep ; 42(9): 113059, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37660295

RESUMO

Previous work suggests that cell stress induces release of the normally secreted chaperone clusterin (CLU) into the cytosol. We analyzed the localization of CLU in healthy and stressed cells, the mechanism of its cytosolic release, and its interactions with cytosolic misfolded proteins. Key results of this study are the following: (1) full-length CLU is released to the cytosol during stress, (2) the CLU N-terminal D1 residue is recognized by the N-end rule pathway and together with the enzyme ATE1 is essential for cytosolic release, (3) CLU can form stable complexes with cytosolic misfolded proteins and direct them to the proteasome and autophagosomes, and (4) cytosolic CLU protects cells from hypoxic stress and the cytosolic overexpression of an aggregation-prone protein. Collectively, the results suggest that enhanced cytosolic release of CLU is a stress response that can inhibit the toxicity of misfolded proteins and facilitate their targeted degradation via both autophagy and the proteasome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA