Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 925
Filtrar
1.
J Environ Manage ; 366: 121793, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991342

RESUMO

Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification. Volumetric ammonium oxidation rate of 0.4-1.2 kg/(m3·d) were achieved with the specific biomass activities of 5.8-13.9 mg N/(gVSS·h). Stable partial nitritation with nitrite accumulation efficiency over 85% could be maintained at pH above 6 with the aid of residual ammonium, whereas the nitrite accumulation disappeared when pH was below 6. Interestingly, the granule morphology significantly improved during the acidic operation. The increased secretion of extracellular polymeric substances (especially polysaccharides) suggested a self-protective behavior of microbes in the aerobic granules against acidic stress. 16S rRNA gene sequencing analyses indicated that Candidatus Nitrospira defluvii was always the dominant nitrite-oxidizing bacteria, while the dominant ammonia-oxidizing bacteria shifted from Nitrosomonas europaea to Nitrosomonas mobilis. This study, for the first time, demonstrated the improved stability of aerobic granules under acidic conditions, and also highlighted aerobic granules as a useful solution to achieve high-rate acidic nitrification.

2.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000617

RESUMO

Due to the specificity, high efficiency, and gentleness of enzyme catalysis, the industrial utilization of enzymes has attracted more and more attention. Immobilized enzymes can be recovered/recycled easily compared to their free forms. The primary benefit of immobilization is protection of the enzymes from harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). In this paper, catalase was successfully immobilized in a poly(aryl ether sulfone) carrier (PAES-C) with tunable pore structure as well as carboxylic acid side chains. Moreover, immobilization factors like temperature, time, and free-enzyme dosage were optimized to maximize the value of the carrier and enzyme. Compared with free enzyme, the immobilized-enzyme exhibited higher enzymatic activity (188.75 U g-1, at 30 °C and pH 7) and better thermal stability (at 60 °C). The adsorption capacity of enzyme protein per unit mass carrier was 4.685 mg. Hydrogen peroxide decomposition carried out in a continuous-flow reactor was selected as a model reaction to investigate the performance of immobilized catalase. Immobilized-enzymes showed a higher conversion rate (90% at 8 mL/min, 1 h and 0.2 g) compared to intermittent operation. In addition, PAES-C has been synthesized using dichlorodiphenyl sulfone and the renewable resource bisphenolic acid, which meets the requirements of green chemistry. These results suggest that PAES-C as a carrier for immobilized catalase could improve the catalytic activity and stability of catalase, simplify the separation of enzymes, and exhibit good stability and reusability.

3.
Int J Biol Macromol ; : 133873, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013505

RESUMO

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.

4.
J Flow Chem ; 14(2): 377-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882391

RESUMO

Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.

5.
Chemosphere ; 361: 142524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844103

RESUMO

Covalent Organic Frameworks (COF) having conjugated backbone are an interesting class of metal-free, visible light active, heterogeneous photocatalysts. Interestingly, synthesis of COF using continuous flow process has emerged as an efficient, alternative method when compared to the traditional batch process. Here, we demonstrate the possibility to engineer the physical properties and hence the adsorption and catalytic activities of a ß-ketoenamine COF by varying monomer flow rate and microreactor design during the continuous flow synthesis. Crystallinity of the COF increases on varying the monomer flow rate from 100 (S-100) to 500 (S-500) and up to 1000 µLmin-1 (S-1000), in an S-shaped microreactor, resulting in an enhanced surface area: 525, 722 and 1119 m2g-1 respectively. The photophysical properties of the COF are also found to vary significantly with the change in flow synthesis conditions. S-1000 is characterized by the highest adsorption of MB, due to its high surface area and accessible pores. On the other hand, S-500 shows the highest photocurrent, a low recombination of photogenerated charges and the lowest charge transfer resistance. Thus, S-500 is found to be the best photocatalyst for the removal of a model pollutant (methylene blue, MB). Further, enhanced photocatalytic removal of MB using S-500 could be achieved by performing the photocatalysis in continuous flow.


Assuntos
Estruturas Metalorgânicas , Catálise , Estruturas Metalorgânicas/química , Adsorção , Luz , Processos Fotoquímicos , Poluentes Químicos da Água/química , Aminas/química , Cetonas
6.
J Int Med Res ; 52(6): 3000605241258474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38901839

RESUMO

The gold standard therapy for end-stage heart failure is cardiac transplantation. However, in the face of a donor shortage, a mechanical assist device such as the left ventricular assist device HeartMate 3 (Abbott Laboratories, Abbott Park, IL, USA) serves as bridging therapy to transplantation and/or destination therapy. Current guidelines recommend anticoagulation with a vitamin K antagonist in combination with low-dose aspirin. We herein report a challenging anticoagulation regimen in a patient with a HeartMate 3 in whom systemic anticoagulation with warfarin was not feasible for 4 years because of low compatibility and a rare X-factor deficiency. This is a rare hematological disorder, estimated to affect approximately 1 in every 500,000 to 1,000,000 people in the general population. The patient finally received a modified anticoagulation regimen involving the combination of rivaroxaban and clopidogrel without warfarin. Under this regimen, the patient remained free of thromboembolic complications for 4 years with in situ placement of the left ventricular assist device. This case illustrates that under specific circumstances, long-term absence of warfarin therapy is feasible in patients with a HeartMate 3.


Assuntos
Anticoagulantes , Coração Auxiliar , Tromboembolia , Varfarina , Humanos , Coração Auxiliar/efeitos adversos , Varfarina/uso terapêutico , Varfarina/administração & dosagem , Tromboembolia/etiologia , Tromboembolia/prevenção & controle , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem , Masculino , Insuficiência Cardíaca/cirurgia , Pessoa de Meia-Idade , Clopidogrel/administração & dosagem , Clopidogrel/uso terapêutico , Clopidogrel/efeitos adversos , Rivaroxabana/administração & dosagem , Rivaroxabana/uso terapêutico , Suspensão de Tratamento
7.
J Heart Lung Transplant ; 43(8): 1199-1234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878021

RESUMO

Life expectancy of patients with a durable, continuous-flow left ventricular assist device (CF-LVAD) continues to increase. Despite significant improvements in the delivery of care for patients with these devices, hemocompatability-related adverse events (HRAEs) are still a concern and contribute to significant morbility and mortality when they occur. As such, dissemination of current best evidence and practices is of critical importance. This ISHLT Consensus Statement is a summative assessment of the current literature on prevention and management of HRAEs through optimal management of oral anticoagulant and antiplatelet medications, parenteral anticoagulant medications, management of patients at high risk for HRAEs and those experiencing thrombotic or bleeding events, and device management outside of antithrombotic medications. This document is intended to assist clinicians caring for patients with a CF-LVAD provide the best care possible with respect to prevention and management of these events.


Assuntos
Consenso , Coração Auxiliar , Coração Auxiliar/efeitos adversos , Humanos , Anticoagulantes/uso terapêutico , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/cirurgia , Trombose/prevenção & controle , Trombose/etiologia , Hemorragia/prevenção & controle , Inibidores da Agregação Plaquetária/uso terapêutico
8.
Int J Biol Macromol ; 274(Pt 1): 133264, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901517

RESUMO

Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.

9.
Angew Chem Int Ed Engl ; : e202407778, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871651

RESUMO

Multienzyme cascades (MECs) have gained much attention in synthetic chemistry but remain far from being a reliable synthetic tool. Here we report a four-enzyme cascade comprising a cofactor-independent and a cofactor self-sustaining bienzymatic module for the enantioselective benzylic C-H amination of arylalkanes, a challenging transformation from bulk chemicals to high value-added chiral amines. The two modules were subsequently optimized by enzyme co-immobilization with microenvironmental tuning, and finally integrated in a gas-liquid segmented flow system, resulting in simultaneous improvements in enzyme performance, mass transfer, system compatibility, and productivity. The flow system enabled continuous C-H amination of arylalkanes (up to 100 mM) utilizing the sole cofactor NADH (0.5 mM) in >90% conversion, achieving a high space-time yield (STY) of 3.6 g·L -1 ·h -1 , which is a 90-fold increase over previously reported values.

10.
Small ; : e2401360, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708800

RESUMO

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

11.
Water Res ; 257: 121531, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701553

RESUMO

The development of continuous flow reactors (CFRs) employing aerobic granular sludge (AGS) for the retrofit of existing wastewater treatment plants (WWTPs) using a continuous-flow activated sludge (CFAS) system has garnered increasing interest. This follows the worldwide adoption of AGS technology in sequencing batch reactors (SBRs). The better settleability of AGS compared to AS allows for process intensification of existing wastewater treatment plants without the difficult conversion of often relatively shallow CFRs to deeper AGS-SBRs. To retrofit existing CFAS systems with AGS, achieving both increased hydraulic capacity and enhanced biological nutrient removal necessitates the formation of granular sludge based on the same selective pressures applied in AGS-SBRs. Previous efforts have focussed mainly on the selective wasting of flocculent sludge and retaining granular sludge to drive aerobic granulation. In this study a pilot-scale CFR was developed to best mimic the implementation of the granulation mechanisms of full-scale AGS-SBRs. The pilot-scale reactor was fed with pre-settled municipal wastewater. We established metrics to assess the degree to which the proposed mechanisms were implemented in the pilot-scale CFR and compared them to data from full-scale AGS-SBRs, specifically with respect to the anaerobic distribution of granule forming substrates (GFS). The selective pressures for granular sludge formation were implemented through inclusion of anaerobic upflow selectors with a water depth of 2.5 meters, which yielded a sludge with properties similar to AGS from full-scale SBRs. In comparison to the CFAS system at Harnaschpolder WWTP treating the same pre-settled wastewater, a more than twofold increase in volumetric removal capacity for both phosphorus and nitrogen was achieved. The use of a completely mixed anaerobic selector, as opposed to an anaerobic upflow selector, caused a shift in EBPR activity from the largest towards the smallest size class, while nitrification was majorly unaffected. Anaerobic selective feeding via bottom-feeding is, therefore, favorable for the long-term stability of AGS, especially for less acidified wastewater. The research underlines the potential of AGS for enhancing the hydraulic and biological treatment capacity of existing CFAS systems.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Aerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Projetos Piloto
12.
Adv Mater ; : e2404607, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762764

RESUMO

The design and construction of continuous flow biochemical reactors comprising immobilized biocatalysts have generated great interest in the efficient synthesis of value-added chemicals. Living cells use compartmentalization and reaction-diffusion processes for spatiotemporal regulation of biocatalytic reactions, and implementing these strategies into continuous flow reactors can offer new opportunities in reactor design and application. Herein, the fabrication of protocell-based continuous flow reactors for enzyme and whole-cell mediated biocatalysis is demonstrated. Semipermeable membranized coacervate vesicles are employed as model protocells that spontaneously sequester enzymes or accumulate living bacteria to produce embodied microreactors capable of single- or multiple-step catalytic reactions. By packing millions of the enzyme/bacteria-containing coacervate vesicles in a glass column, a facile, cost-effective, and modular methodology capable of performing oxidoreductase, peroxidase and lipolytic reactions, enzyme-mediated L-DOPA synthesis, and whole-cell glycolysis under continuous flow conditions, is demonstrated. It is shown that the protocell-nested enzymes and bacterial cells exhibit enhanced activities and stability under deleterious operating conditions compared with their non-encapsulated counterparts. These results provide a step toward the engineering of continuous flow reactors based on cell-like microscale agents and offer opportunities in the development of green and sustainable industrial bioprocessing.

13.
Environ Res ; 255: 119158, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763279

RESUMO

The reliable and efficient nitrite production rate (NPR) through nitritation process is the prerequisite for the efficient running of subsequent processes, like the anammox process and the nitrite shunt. However, there has been scant research on stable and productive nitritation process in recent years. In this study, at a stable hydraulic retention time of 12.0 h and with precise and strict DO control, the upper limit of the NPR was initially investigated using a continuous-flow granular sludge reactor. The NPR of 1.69 kg/m3/d with a nitrite production efficiency of 81.97% was finally achieved, which set a record until now in similar research. The median sludge particle size of 270.0 µm confirmed the development of clearly defined granular sludge. The genus Nitrosomonas was the major ammonium oxidizing bacteria. In conclusion, this study provides valuable insights for the practical application of the effective nitritation process driving subsequent nitrogen removal processes.


Assuntos
Reatores Biológicos , Nitritos , Nitrogênio , Esgotos , Esgotos/microbiologia , Nitritos/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Nitrosomonas/metabolismo , Compostos de Amônio/metabolismo
14.
Angew Chem Int Ed Engl ; : e202408765, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797705

RESUMO

Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 µm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers. The PdBi 2D MNWNs affords the highest specific activity for formic acid (2669.1 mA mg-1) among current unsupported catalysts, which is 103.5 times higher than Pt-black, respectively. Furthermore, in situ Fourier transform infrared (FTIR) experiments provide comprehensive evidence that PdBi 2D MNWNs catalysts can effectively prevent CO* poisoning, resulting in exceptional activity and stability for the oxidation of formic acid.

15.
Chemistry ; 30(38): e202401402, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38719730

RESUMO

Amidations employing mixed (carbonic) anhydrides have long been favoured in peptide synthesis because of their cost-effectiveness and less waste generation. Despite their long history, no study has compared the effects of additives on the activation of mixed anhydrides and carbonic anhydrides. In this study, we investigated the amidation of mixed (carbonic) anhydride in the presence of a base and/or Brønsted acids. The use of NMI⋅HCl significantly improved the conversion of the mixed carbonic anhydride, while expediting nucleophilic attacks on the desired carbonyl group. In contrast, in the case of mixed anhydrides, neither the conversion nor the desired nucleophilic attack improved significantly. We developed a C-terminus-free N-methylated peptide synthesis method using mixed carbonic anhydrides in a micro-flow reactor. Fourteen N-alkylated peptides were synthesized in moderate to high yields (55-99 %) without severe racemization (<1 %). Additionally, a significant enhancement in the amidation between mixed carbonic anhydrides and bis-TMS-protected N-methyl amino acids with the inclusion of NMI⋅HCl was observed for the first time. In addition, we observed unexpected C-terminal epimerization of the C-terminus-free N-methyl peptides.


Assuntos
Anidridos , Peptídeos , Peptídeos/química , Anidridos/química , Metilação , Ácidos/química , Alquilação
16.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675435

RESUMO

Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammals and is involved in several physiological processes through NPY Y1, Y2, Y4 and Y5 receptors. Of those, the Y2 receptor has particular relevance for its autoreceptor role in inhibiting the release of NPY and other neurotransmitters and for its involvement in relevant mechanisms such as feeding behaviour, cognitive processes, emotion regulation, circadian rhythms and disorders such as epilepsy and cancer. PET imaging of the Y2 receptor can provide a valuable platform to understand this receptor's functional role and evaluate its potential as a therapeutic target. In this work, we set out to refine the chemical and radiochemical synthesis of the Y2 receptor antagonist N-[11C]Me-JNJ31020028 for in vivo PET imaging studies. The non-radioactive reference compound, N-Me-JNJ-31020028, was synthesised through batch synthesis and continuous flow methodology, with 43% and 92% yields, respectively. N-[11C]Me-JNJ-31020028 was obtained with a radiochemical purity > 99%, RCY of 31% and molar activity of 156 GBq/µmol. PET imaging clearly showed the tracer's biodistribution in several areas of the mouse brain and gut where Y2 receptors are known to be expressed.

17.
Sci Total Environ ; 927: 172442, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614336

RESUMO

The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.


Assuntos
Reatores Biológicos , Desnitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Nitrogênio , Anaerobiose , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
18.
Ultrason Sonochem ; 105: 106869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581797

RESUMO

The level of knowledge on the non-thermal contribution of ultrasonic wave's energy to perform physico-chemical phenomena is one of the bottlenecks for the commercialization purposes. Under constant nominal power of transducer (Pn), the input electrical power (Pin) is less and sensitive to the medium's physical properties. This study attempts to assess the conversion of acoustic to thermal power experimentally and numerically using COMSOL Multiphysis@ for a 24 kHz horn-type sonicator through a medium without any sono-chemical effect. Single- and homogeneous two-phase Newtonian mixtures of sunflower oil and water (o/w) with a relatively wide range of density (914-998 kg/m3) and viscosity (0.5-63.5 mPa.s) were irradiated in a lab-scale vessel (1 L) under batch and continuous flow configuration. The direct influence of Pn (80-400 W) and o/w ratio (0-1) on temperature rise and subsequent thermo-physical properties of liquid and the indirect influence on Pin and thermal energy conversion (TEC) were investigated employing calorimetric method. A new engineering concept including a power factor correlation was proposed and validated for prediction of Pin as a function of liquid space velocity (ϑ), temperature, Prandtl (Pr) and Ohnesorge (Oh) dimensionless groups. The results showed that under constant temperature and Pn, increasing Pr and Oh increased Pin with a similar trend for both modes of operation. An increase in temperature directly led to a decrease in Pin with a power factor closed to "-1". The Pin in continuous flow was higher compared to batch configuration at similar temperature, liquid properties, and Pn. This effect was more significant with increasing ϑ. An increase in ϑ at constant Pn led to a decrease in the inlet/outlet temperature difference in continuous flow and an increase in Pin. Increasing Pn resulted in higher TEC for both configurations; however, TEC was relatively lower in continuous flow than batch configuration indicating more efficient sonication in continuous flow.

19.
Small ; : e2401489, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661053

RESUMO

To mitigate the environmental impact of the improper disposal of spent LiFePO4 batteries and reduce resource waste, the development of LiFePO4 recycling technologies is of paramount importance. Meanwhile, olivine-structured NaFePO4 in sodium-ion batteries has received great attention, due to its high theoretical specific capacity of 154 mAh g-1 and excellent stability. However, olivine NaFePO4 only can be synthesized from olivine LiFePO4. Accordingly, in this proposal, developing the continuous flow electrochemical solid-liquid reactor-based metal ion insertion technology is to utilize the olivine FePO4, recycled from LiFePO4, and to synthesize NaFePO4. Additionally, by employing I- as the reducing agent, NaFePO4 is successfully synthesized with a discharge-specific capacity of 134 mAh g-1 at 0.1C and a remarkable capacity retention rate of 86.5% after 100 cycles at 0.2C. And the reasons for sodium deficiency in the synthesized NFP are elucidated through first-principles calculations. Furthermore, the kinetics of the solid-solution reaction 2 (Na2/3+ßPO4→ Na1-αFePO4) mechanism improve with cycling and are sensitive to temperature. Utilizing a minimal amount of reducing agent in the electrochemical reactor, NaFePO4 synthesis is successfully achieved. This innovative approach offers a new, cost-effective, and environmentally friendly strategy for preparing NaFePO4 from recycling LiFePO4.

20.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683061

RESUMO

Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.


Assuntos
Coração Auxiliar , Hidrodinâmica , Fluxo Pulsátil , Modelos Cardiovasculares , Simulação por Computador , Centrifugação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA