Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Protein Sci ; 33(9): e5099, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39145409

RESUMO

The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.


Assuntos
Tauopatias , Proteínas tau , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Humanos , Tauopatias/genética , Tauopatias/metabolismo , Mutação , Conformação Proteica , Multimerização Proteica , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo
2.
Int J Biol Macromol ; 279(Pt 1): 135137, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39208885

RESUMO

Aberrant aggregation of amyloid-ß (Aß) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aß co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aß aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aß monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aß monomer could not directly grow onto IAPP fibrils by forming multiple stable ß-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aß monomer could axially grow on the Aß fibril, forming parallel in-register ß-sheets. Additionally, we showed that the IAPP fibril could catalyze Aß fibril nucleation by promoting the formation of parallel in-register ß-sheets in the C-terminus between bound Aß peptides. This study enhances our understanding of the molecular interplay between Aß and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.

3.
ACS Chem Neurosci ; 15(15): 2936-2953, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39073874

RESUMO

Amyloid-ß (Aß) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aß, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aß and TDP-43. We found that Aß monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting ß-sheet rich conformations that were promoted by the interaction. Furthermore, Aß associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aß to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aß fibril growth, we also simulated the NTD with an Aß40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aß monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aß toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Proteínas de Ligação a DNA , Simulação de Dinâmica Molecular , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Amiloide/metabolismo , Ligação Proteica , Doença de Alzheimer/metabolismo
4.
ACS Appl Mater Interfaces ; 16(15): 18268-18284, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564419

RESUMO

The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aß1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.


Assuntos
Nanofibras , Nanoestruturas , Neuroblastoma , Humanos , Histidina , Peptídeos/química , Nanofibras/química , Amiloide/química , Peptídeos beta-Amiloides/química
5.
J Biol Chem ; 300(5): 107207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522514

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons. Neuronal superoxide dismutase-1 (SOD1) inclusion bodies are characteristic of familial ALS with SOD1 mutations, while a hallmark of sporadic ALS is inclusions containing aggregated WT TAR DNA-binding protein 43 (TDP-43). We show here that co-expression of mutant or WT TDP-43 with SOD1 leads to misfolding of endogenous SOD1 and aggregation of SOD1 reporter protein SOD1G85R-GFP in human cell cultures and promotes synergistic axonopathy in zebrafish. Intriguingly, this pathological interaction is modulated by natively solvent-exposed tryptophans in SOD1 (tryptophan-32) and TDP-43 RNA-recognition motif RRM1 (tryptophan-172), in concert with natively sequestered TDP-43 N-terminal domain tryptophan-68. TDP-43 RRM1 intrabodies reduce WT SOD1 misfolding in human cell cultures, via blocking tryptophan-172. Tryptophan-68 becomes antibody-accessible in aggregated TDP-43 in sporadic ALS motor neurons and cell culture. 5-fluorouridine inhibits TDP-43-induced G85R-GFP SOD1 aggregation in human cell cultures and ameliorates axonopathy in zebrafish, via its interaction with SOD1 tryptophan-32. Collectively, our results establish a novel and potentially druggable tryptophan-mediated mechanism whereby two principal ALS disease effector proteins might directly interact in disease.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Superóxido Dismutase-1 , Triptofano , Peixe-Zebra , Humanos , Triptofano/metabolismo , Animais , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Dobramento de Proteína , Neurônios Motores/metabolismo , Neurônios Motores/patologia
6.
Trends Neurosci ; 47(3): 209-226, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38355325

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies (LBs). The main proteinaceous component of LBs is aggregated α-synuclein (α-syn). However, the mechanisms underlying α-syn aggregation are not yet fully understood. Converging lines of evidence indicate that, under certain pathological conditions, various proteins can interact with α-syn and regulate its aggregation. Understanding these protein-protein interactions is crucial for unraveling the molecular mechanisms contributing to PD pathogenesis. In this review we provide an overview of the current knowledge on protein-protein interactions that regulate α-syn aggregation. Additionally, we briefly summarize the methods used to investigate the influence of protein-protein interactions on α-syn aggregation and propagation.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271485

RESUMO

The aggregation of medin forming aortic medial amyloid is linked to arterial wall degeneration and cerebrovascular dysfunction. Elevated levels of arteriolar medin are correlated with an increased presence of vascular amyloid-ß (Aß) aggregates, a hallmark of Alzheimer's disease (AD) and vascular dementia. The cross-interaction between medin and Aß results in the formation of heterologous fibrils through co-aggregation and cross-seeding processes both in vitro and in vivo. However, a comprehensive molecular understanding of the cross-interaction between medin and Aß-two intrinsically disordered proteins-is critically lacking. Here, we employed atomistic discrete molecular dynamics simulations to systematically investigate the self-association, co-aggregation and also the phenomenon of cross-seeding between these two proteins. Our results demonstrated that both Aß and medin were aggregation prone and their mixture tended to form ß-sheet-rich hetero-aggregates. The formation of Aß-medin hetero-aggregates did not hinder Aß and medin from recruiting additional Aß and medin peptides to grow into larger ß-sheet-rich aggregates. The ß-barrel oligomer intermediates observed in the self-aggregations of Aß and medin were also present during their co-aggregation. In cross-seeding simulations, preformed Aß fibrils could recruit isolated medin monomers to form elongated ß-sheets. Overall, our comprehensive simulations suggested that the cross-interaction between Aß and medin may contribute to their pathological aggregation, given the inherent amyloidogenic tendencies of both medin and Aß. Targeting medin, therefore, could offer a novel therapeutic approach to preserving brain function during aging and AD by improving vascular health.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Simulação de Dinâmica Molecular , Proteínas Amiloidogênicas , Fatores de Risco
8.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003322

RESUMO

Heterologous interactions between different amyloid-forming proteins, also called cross-interactions, may have a critical impact on disease-related amyloid formation. ß-hairpin conformers of amyloid-forming proteins have been shown to affect homologous interactions in the amyloid self-assembly process. Here, we applied two ß-hairpin-forming peptides derived from immunoglobulin light chains as models to test how heterologous ß-hairpins modulate the fibril formation of Parkinson's disease-associated protein α-synuclein (αSyn). The peptides SMAhp and LENhp comprise ß-strands C and C' of the κ4 antibodies SMA and LEN, which are associated with light chain amyloidosis and multiple myeloma, respectively. SMAhp and LENhp bind with high affinity to the ß-hairpin-binding protein ß-wrapin AS10 according to isothermal titration calorimetry and NMR spectroscopy. The addition of SMAhp and LENhp affects the kinetics of αSyn aggregation monitored by Thioflavin T (ThT) fluorescence, with the effect depending on assay conditions, salt concentration, and the applied ß-hairpin peptide. In the absence of agitation, substoichiometric concentrations of the hairpin peptides strongly reduce the lag time of αSyn aggregation, suggesting that they support the nucleation of αSyn amyloid fibrils. The effect is also observed for the aggregation of αSyn fragments lacking the N-terminus or the C-terminus, indicating that the promotion of nucleation involves the interaction of hairpin peptides with the hydrophobic non-amyloid-ß component (NAC) region.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Cadeias Leves de Imunoglobulina , Doença de Parkinson/metabolismo , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química
9.
ACS Chem Neurosci ; 14(24): 4274-4281, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962955

RESUMO

Recent discoveries on the self-assembly of aromatic amino acids into amyloid-like neurotoxic nanostructures have initiated a quest to decode the molecular mechanisms for the initiation of neurodegeneration. Moreover, the multicomponent nature of the amyloid deposits still questions the existing and well-defined amyloid cascade hypothesis. Hence, deciphering the neurotoxicity of amyloid-like nanostructures of aromatic amino acids becomes crucial for understanding the etiology of amyloidogenesis. Here, we demonstrate the cellular internalization and consequential damaging effects of self-assembled amyloid-like tryptophan nanostructures on human neuroblastoma cells. The cell-damaging potential of tryptophan nanostructure seems to be facilitated via ROS generation, necrosis and apoptosis mediated cell death. Further, tryptophan nanostructures were found to be seeding competent conformers, which triggered aggressive aggregation of brain extract components. The early stage intermediate nanostructures possess a higher cross-seeding efficacy than the seeding potential of the matured tryptophan fibrils. In addition to the cell-damaging and cross-seeding effects, tryptophan fibrils were found to catalyze oxidation of neuromodulator dopamine. These findings add more insights into the specific role of tryptophan self-assembly during the pathogenesis of hypertryptophanemia and other amyloid-associated neurodegenerative complications.


Assuntos
Amiloide , Triptofano , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Aminoácidos Aromáticos
10.
Cell Rep ; 42(11): 113342, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897723

RESUMO

The molecular mechanisms that trigger Tau aggregation in Alzheimer's disease (AD) remain elusive. Fungi, especially Saccharomyces cerevisiae (S. cerevisiae), can be found in brain samples from patients with AD. Here, we show that the yeast protein Ure2p from S. cerevisiae interacts with Tau and facilitates its aggregation. The Ure2p-seeded Tau fibrils are more potent in seeding Tau and causing neurotoxicity in vitro. When injected into the hippocampus of Tau P301S transgenic mice, the Ure2p-seeded Tau fibrils show enhanced seeding activity compared with pure Tau fibrils. Strikingly, intracranial injection of Ure2p fibrils promotes the aggregation of Tau and cognitive impairment in Tau P301S mice. Furthermore, intranasal infection of S. cerevisiae in the nasal cavity of Tau P301S mice accelerates the aggregation of Tau. Together, these observations indicate that the yeast protein Ure2p initiates Tau pathology. Our results provide a conceptual advance that non-mammalian prions may cross-seed mammalian prion-like proteins.


Assuntos
Glutationa Peroxidase , Príons , Proteínas de Saccharomyces cerevisiae , Tauopatias , Proteínas tau , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Príons/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glutationa Peroxidase/metabolismo
11.
Chem Biol Interact ; 386: 110783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884182

RESUMO

Alzheimer's disease (AD) pathogenesis has been attributed to extracellular aggregates of amyloid ß (Aß) plaques and neurofibrillary tangles in the human brain. It has been reported that butyrylcholinesterase (BChE) also accumulates in the brain Aß plaques in AD. We have previously found that the BChE substitution in 5'UTR caused an in-frame N-terminal extension of 41 amino acids of the BChE signal peptide. The resultant variant with a 69 amino acid signal peptide, designated N-BChE, could play a role in AD development. Here, we report that the signal sequence of the BChE, if produced in an extended 69 aa version, can self-aggregate and could form seeds that enhance amyloid fibril formation in vitro in a dose-dependent manner and create larger co-aggregates. Similar phenomena could have been observed in the human brain if such an extended form of the signal sequence had been, in some circumstances, translated.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Sinais Direcionadores de Proteínas
12.
J Biol Chem ; 299(10): 105196, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633335

RESUMO

Amyloidogenic deposition of ß-amyloid (Aß) peptides in human brain involves not only the wild-type Aß (wt-Aß) sequences, but also posttranslationally modified Aß (PTM-Aß) variants. Recent studies hypothesizes that the PTM-Aß variants may trigger the deposition of wt-Aß, which underlies the pathology of Sporadic Alzheimer's disease. Among PTM-Aß variants, the pyroglutamate-3-Aß (pyroE3-Aß) has attracted much attention because of their significant abundances and broad distributions in senile plaques and dispersible and soluble oligomers. pyroE3-specific antibodies are being tested as potential anti-Aß drugs in clinical trials. However, evidence that support the triggering effect of pyroE3-Aß on wt-Aß in cells remain lacking, which diminishes its pathological relevance. We show here that cross-seeding with pyroE3-Aß40 leads to accelerated extracellular and intracellular aggregation of wt-Aß40 in different neuronal cells. Cytotoxicity levels are elevated through the cross-seeded aggregation, comparing with the self-seeded aggregation of wt-Aß40 or the static presence of pyroE3-Aß40 seeds. For the extracellular deposition in mouse neuroblastoma Neuro2a (N2a) cells, the cytotoxicity elevation correlates positively with the seeding efficiency. Besides aggregation rates, cross-seeding with pyroE3-Aß40 also modulates the molecular level structural polymorphisms of the resultant wt-Aß40 fibrils. Using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, we identified key structural differences between the parent pyroE3/ΔE3 and wt-Aß40 fibrils within their fibrillar cores. Structural propagation from seeds to daughter fibrils is demonstrated to be more pronounced in the extracellular seeding in N2a cells by comparing the ssNMR spectra from different seeded wt-Aß40 fibrils, but less significant in the intracellular seeding process in human neuroblastoma SH-SY5Y cells.

13.
ACS Chem Neurosci ; 14(17): 3143-3155, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37589476

RESUMO

Amyloids and antimicrobial peptides have traditionally been recognized as distinct families with separate biological functions and targets. However, certain amyloids and antimicrobial peptides share structural and functional characteristics that contribute to the development of neurodegenerative diseases. Specifically, the aggregation of amyloid-ß (Aß) and microbial infections are interconnected pathological factors in Alzheimer's disease (AD). In this study, we propose and demonstrate a novel repurposing strategy for an antimicrobial peptide of protegrin-1 (PG-1), which exhibits the ability to simultaneously prevent Aß aggregation and microbial infection both in vitro and in vivo. Through a comprehensive analysis using protein, cell, and worm assays, we uncover multiple functions of PG-1 against Aß, including the following: (i) complete inhibition of Aß aggregation at a low molar ratio of PG-1/Aß = 0.25:1, (ii) disassembly of the preformed Aß fibrils into amorphous aggregates, (iii) reduction of Aß-induced cytotoxicity in SH-SY5Y cells and transgenic GMC101 nematodes, and (iv) preservation of original antimicrobial activity against P.A., E.coli., S.A., and S.E. strains in the presence of Aß. Mechanistically, the dual anti-amyloid and anti-bacterial functions of PG-1 primarily arise from its strong binding to distinct Aß seeds (KD = 1.24-1.90 µM) through conformationally similar ß-sheet associations. This work introduces a promising strategy to repurpose antimicrobial peptides as amyloid inhibitors, effectively targeting multiple pathological pathways in AD.


Assuntos
Doença de Alzheimer , Anti-Infecciosos , Neuroblastoma , Humanos , Peptídeos Catiônicos Antimicrobianos , Proteínas Amiloidogênicas , Peptídeos Antimicrobianos , Peptídeos beta-Amiloides , Escherichia coli
14.
Virology ; 586: 12-22, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473502

RESUMO

Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the ß-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.


Assuntos
Vírus da Dengue , Proteínas Virais , Vírus da Dengue/química , Vírus da Dengue/classificação , Proteoma , Proteínas Virais/química , Proteínas Virais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos , Humanos , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia
15.
Prog Neurobiol ; 226: 102462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150314

RESUMO

Pathologic aggregation and prion-like propagation of α-synuclein (α-syn) are the hallmarks of Parkinson's disease (PD). Emerging evidence shows that type 2 diabetes mellitus (T2DM) is a risk factor for PD. Interestingly, T2DM is characterized by the amyloid deposition of islet amyloid polypeptide (IAPP) in the pancreas. Although T2DM and PD share pathological similarities, the underlying molecular mechanisms bridging these two diseases remain unknown. Here, we report that IAPP co-deposits with α-syn in the brains of PD patients. IAPP interacts with α-syn and accelerates its aggregation. In addition, the IAPP-seeded α-syn fibrils show enhanced seeding activity and neurotoxicity compared with pure α-syn fibrils in vitro and in vivo. Strikingly, intravenous injection of IAPP fibrils into α-syn A53T transgenic mice or human SNCA transgenic mice accelerated the aggregation of α-syn and PD-like motor deficits. Taken together, these findings support that IAPP acts as a trigger of α-syn pathology in PD, and provide a mechanistic explanation for the increased risk and faster progression of PD in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos Transgênicos , Amiloide/química
16.
ACS Chem Neurosci ; 14(7): 1321-1330, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975100

RESUMO

Both senile plaques formed by amyloid-ß (Aß) and neurofibrillary tangles (NFTs) comprised of tau are pathological hallmarks of Alzheimer's disease (AD). The accumulation of NFTs better correlates with the loss of cognitive function than senile plaques, but NFTs are rarely observed without the presence of senile plaques. Hence, cross-seeding of tau by preformed Aß amyloid fibril seeds has been proposed to drive the aggregation of tau and exacerbate AD progression, but the molecular mechanism remains unknown. Here, we first identified cross-interaction hotspots between Aß and tau using atomistic discrete molecular dynamics simulations (DMD) and confirmed the critical role of the four microtubule-binding repeats of tau (R1-R4) in the cross-interaction with Aß. We further investigated the binding structure and dynamics of each tau repeat with a preformed Aß fibril seed. Specifically, R1 and R3 preferred to bind the Aß fibril lateral surface instead of the elongation end. In contrast, R2 and R4 had higher binding propensities to the fibril elongation end than the lateral surface, enhancing ß-sheet content by forming hydrogen bonds with the exposed hydrogen bond donors and acceptors. Together, our results suggest that the four repeats play distinct roles in driving the binding of tau to different surfaces of an Aß fibril seed. Binding of tau to the lateral surface of Aß fibril can increase the local concentration, while the binding to the elongation surface promotes ß-sheet formation, both of which reduce the free energy barrier for tau aggregation nucleation and subsequent fibrillization.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Amiloide , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microtúbulos/metabolismo
17.
Front Mol Biosci ; 10: 1080112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793785

RESUMO

Introduction: Parkinson's disease and type 2 diabetes have both elements of local amyloid depositions in their pathogenesis. In Parkinson's disease, alpha-synuclein (aSyn) forms insoluble Lewy bodies and Lewy neurites in brain neurons, and in type 2 diabetes, islet amyloid polypeptide (IAPP) comprises the amyloid in the islets of Langerhans. In this study, we assessed the interaction between aSyn and IAPP in human pancreatic tissues, both ex vivo and in vitro. Material and Methods: The antibody-based detection techniques, proximity ligation assay (PLA), and immuno-TEM were used for co-localization studies. Bifluorescence complementation (BiFC) was used for interaction studies between IAPP and aSyn in HEK 293 cells. The Thioflavin T assay was used for studies of cross-seeding between IAPP and aSyn. ASyn was downregulated with siRNA, and insulin secretion was monitored using TIRF microscopy. Results: We demonstrate intracellular co-localization of aSyn with IAPP, while aSyn is absent in the extracellular amyloid deposits. ASyn reactivity is present in the secretory granules of ß-cells and some α-cells in human islets. The BiFC-expression of aSyn/aSyn and IAPP/IAPP in HEK293 cells resulted in 29.3% and 19.7% fluorescent cells, respectively, while aSyn/IAPP co-expression resulted in ∼10% fluorescent cells. Preformed aSyn fibrils seeded IAPP fibril formation in vitro, but adding preformed IAPP seeds to aSyn did not change aSyn fibrillation. In addition, mixing monomeric aSyn with monomeric IAPP did not affect IAPP fibril formation. Finally, the knockdown of endogenous aSyn did not affect ß cell function or viability, nor did overexpression of aSyn affect ß cell viability. Discussion: Despite the proximity of aSyn and IAPP in ß-cells and the detected capacity of preformed aSyn fibrils to seed IAPP in vitro, it is still an open question if an interaction between the two molecules is of pathogenic significance for type 2 diabetes.

18.
Methods Mol Biol ; 2551: 633-647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310229

RESUMO

Amyloidogenesis, self-propagation of protein or peptide monomers to amyloid fibrils, has been linked to incurable pathogenesis of neurodegenerative diseases such as Alzheimer's disease and prion diseases. Investigations of amyloid structures and how monomers are transformed through seeding are therefore crucial for developing therapeutics toward these diseases. Here we describe a cross-seeding method to explore the amyloid core in prion fibrils that uses preformed amyloid fibrils as a seed to induce the transformation of other protein or peptide monomers to amyloid fibrils.


Assuntos
Amiloidose , Doenças Priônicas , Príons , Humanos , Amiloide/química , Príons/química , Proteínas Amiloidogênicas
19.
ACS Chem Neurosci ; 14(2): 312-322, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36577130

RESUMO

Both cardiovascular diseases (CVDs) and Alzheimer's disease (AD) share some common risk factors (e.g., age, obesity, oxidative stress, inflammation, hypertension) that contribute to their overlapping pathogenesis, indicating a "head-to-heart" pathological connection between CVDs and AD. To explore this potential connection at the protein level, we study the potential cross-seeding (heterotypic interactions) between CVD-associated atrial natriuretic peptide (ANP) and AD-associated ß-amyloid (Aß). Collective aggregation and cell assays demonstrate the cross-seeding of ANP with different Aß species including monomers, oligomers, and fibrils with high binding affinity (KD = 1.234-1.797 µM) in a dose-dependent manner. Such ANP-induced cross-seeding also modifies the Aß aggregation pathway, fibril morphology, and cell deposition pattern by inhibiting Aß fibrillization from small aggregates, disassembling preformed Aß fibrils, and alleviating Aß-associated cytotoxicity. Finally, using transgenic C. elegans worms that express the human muscle-specific Aß1-42, ANP can also effectively delay Aß-induced worm paralysis, decrease Aß plaques in worm brains, and reduce reactive oxygen species (ROS) production, confirming its in vivo inhibition ability to prevent neurodevelopmental toxicity in worms. This work discovers not only a new cross-seeding system between the two disease-related proteins but also a new finding that ANP possesses a new biological function as an Aß inhibitor in the nonaggregated state.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Animais , Humanos , Fator Natriurético Atrial , Caenorhabditis elegans , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos
20.
ACS Chem Neurosci ; 13(20): 2962-2973, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194532

RESUMO

The progress of neurodegenerative disorders correlates with the spread of their associated amyloidogenic proteins. Here, we investigated whether amyloid entry into nonconstitutive neurons could drive cross-toxic outcomes. Amyloid ß (Aß) was stereotaxically introduced into the rodent midbrain tegmentum, where it is not endogenously expressed. Postinfusion, rodent motor and sensorimotor capacities were assessed by standard behavioral tests at 3, 6, 9, and 12 months. The longitudinal study revealed no behavioral abnormalities. However, Aß insult provoked intraneuronal inclusions positive for phosphorylated α-synuclein in dopaminergic neurons and were seen throughout the midbrain, a pathognomonic biomarker suggesting Parkinson's pathogenesis. These findings not only underscore the cross-toxic potential of amyloid proteins but also provide a mechanism by which they disrupt homeostasis in nonconstitutive neurons and cause neuronal corruption, injury, and demise. This study may help reconcile the large incidence of neurodegenerative comorbidity observed clinically.


Assuntos
Amiloidose , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Roedores/metabolismo , Estudos Longitudinais , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Amiloidose/metabolismo , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA