Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Med Chem ; 280: 116947, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39437575

RESUMO

Annulated azecines, mostly partially saturated benzo[d]azecine and dibenzo[c,g]azecine fusion isomers, constitute a unique class of alkaloids and nature-inspired azaheterocyclic compounds with interesting reactivity, physicochemical and biological properties. Due to difficulties associated with the synthesis of the benzazecine (or bioisosteric) scaffold they are not the focus of organic and medicinal chemists' consideration, whereas it is worth noting the range of their pharmacological activities and their potential application in medicinal chemistry. Herein, we reviewed the synthetic methodologies of arene-fused azecine derivatives known up to date and reported about the progress in disclosing their potential in drug discovery. Indeed, their conformational restriction or liberation drives their selectivity towards diverse biological targets, making them versatile scaffolds for developing drugs, including antipsychotic and anticancer drugs, but also small molecules with potential for anti-neurodegenerative treatments, as the recent literature shows.

2.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(7. Vyp. 2): 79-84, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39175244

RESUMO

OBJECTIVE: To investigate the role of dopamine receptor D1DR and D2DR in the production of cytokines interleukin-6 (IL-6) and IL-1ß by monocytes and macrophages in patients with relapsing-remitting multiple sclerosis (MS). MATERIAL AND METHODS: Ten patients with relapsing-remitting MS and 10 healthy subjects were examined. The level of IL-6 and IL-1ß production was assessed in culture supernatants obtained from CD14+ monocytes or macrophages stimulated with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). To study the role of dopamine receptors in the regulation of CD14+ monocytes or macrophages, samples of cells were incubated in the presence of specific D1DR or D2DR antagonists, after which IFN-γ/LPS were added to the cultures. Levels of cytokines in culture supernatants were measured by enzyme-linked immunosorbent assay. RESULTS: The production of IL-6 and IL-1ß by CD14+ monocytes and macrophages was comparable between the groups. Blockade of D1DR suppressed cytokine production by CD14+ monocytes and macrophages in both groups. In contrast, blockade of D2DR increased the production of cytokines by CD14+ monocytes and did not affect cytokine production by macrophages in both groups. CONCLUSIONS: Targeting of dopaminergic receptors could be considered as an additional mechanism of immunomodulation in MS with both pro- and anti-inflammatory effects on cells of the innate immune system.


Assuntos
Interleucina-1beta , Interleucina-6 , Macrófagos , Esclerose Múltipla Recidivante-Remitente , Receptores de Dopamina D1 , Humanos , Adulto , Feminino , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo , Masculino , Esclerose Múltipla Recidivante-Remitente/metabolismo , Esclerose Múltipla Recidivante-Remitente/imunologia , Receptores de Dopamina D1/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Receptores de Dopamina D2/metabolismo , Lipopolissacarídeos/farmacologia , Células Cultivadas , Receptores de Lipopolissacarídeos/metabolismo , Pessoa de Meia-Idade , Interferon gama/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791229

RESUMO

Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.


Assuntos
Aminofilina , Catalepsia , Modelos Animais de Doenças , Marcha , Haloperidol , Doença de Parkinson , Animais , Catalepsia/tratamento farmacológico , Catalepsia/induzido quimicamente , Camundongos , Masculino , Aminofilina/administração & dosagem , Aminofilina/farmacologia , Aminofilina/uso terapêutico , Marcha/efeitos dos fármacos , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Doença de Parkinson/tratamento farmacológico
4.
Exp Mol Pathol ; 137: 104905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797131

RESUMO

pathological pain and Attention-deficit/hyperactivity disorder (ADHD) are two complex multifactorial syndromes. The comorbidity of ADHD and altered pain perception is well documented in children, adolescents, and adults. According to pathophysiological investigations, the dopaminergic system's dysfunction provides a common basis for ADHD and comorbid pain. Growing evidence suggests that oxidative stress may be crucial in both pathologies. Recent studies revealed that a small peptide encompassing the redox-active site of selenoprotein T (PSELT), protects dopaminergic neurons and fibers as well as lesioned nerves in animal models. The current study aims to examine the effects of PSELT treatment on ADHD-like symptoms and pain sensitivity, as well as the role of catecholaminergic systems in these effects. Our results demonstrated that intranasal administration of PSELT reduced the hyperactivity in the open field, decreased the impulsivity displayed by 6-OHDA-lesioned male mice in the 5-choice serial reaction time task test and improved attentional performance. In addition, PSELT treatment significantly increased the nociception threshold in both normal and inflammatory conditions. Furthermore, anti-hyperalgesic activity was antagonized with sulpiride pre-treatment, but not by phentolamine, or propranolol pre-treatments. The present study suggests that PSELT reduces the severity of ADHD symptoms in mice and possesses potent antinociceptive effects which could be related to the involvement of D2/D3 dopaminergic receptors.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Oxidopamina , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Camundongos , Masculino , Dor/tratamento farmacológico , Dor/patologia , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Animais Recém-Nascidos , Selenoproteínas/metabolismo , Sulpirida/farmacologia
5.
Arch Biochem Biophys ; 752: 109886, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215960

RESUMO

Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.


Assuntos
Músculo Esquelético , Obesidade , Humanos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Glicosídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Desenvolvimento Muscular/fisiologia , Termogênese/fisiologia
6.
Rev Med Virol ; 34(1): e2506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282395

RESUMO

Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , SARS-CoV-2 , Dopamina , RNA Viral , Receptores Dopaminérgicos
7.
Eur J Neurosci ; 59(6): 1099-1140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37848184

RESUMO

Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.


Assuntos
Dopamina , Extinção Psicológica , Dopamina/fisiologia , Extinção Psicológica/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Aprendizagem da Esquiva
8.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446391

RESUMO

Stress triggers relapses in cocaine use that engage the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and dentate gyrus (DG). Preclinical research suggests that D3 receptor (D3R) antagonists may be a promising means to attenuate cocaine reward and relapse. As D3R regulates the activity of the Akt/mTOR and MEK/ERK1/2 pathways, we assessed the effects of SB-277011-A, a D3R antagonist, on the activity of these kinases during the reinstatement of cocaine-induced conditioned place preference (CPP) induced by psychological (restraint) and physiological (tail pinch) stress. Both stimuli reactivated an extinguished cocaine-CPP, but only restrained animals decreased their locomotor activity during reinstatement. Cocaine-seeking behavior reactivation was correlated with decreased p-Akt, p-mTOR, and p-ERK1/2 activation in both nuclei of restrained animals. While a D3R blockade prevented stress-induced CPP reinstatement and plasma corticosterone enhancement, SB-277011-A distinctly modulated Akt, mTOR, and ERK1/2 activation depending on the stressor and the dose used. Our data support the involvement of corticosterone in the SB-277011-A effects in restrained animals. Additionally, the ratios p-mTOR/mTOR and/or p-ERK1/2 /ERK1/2 in the BLA during stress-induced relapse seem to be related to the locomotor activity of animals receiving 48 mg/kg of the antagonist. Hence, our study indicates the D3R antagonist's efficacy to prevent stress-induced relapses in drug use through distinct modulation of Akt/mTOR and MEK/ERK1/2 pathways in memory-processing nuclei.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Receptores de Dopamina D3 , Proteínas Proto-Oncogênicas c-akt , Condicionamento Operante , Extinção Psicológica/fisiologia , Corticosterona/farmacologia , Estresse Fisiológico , Recidiva , Quinases de Proteína Quinase Ativadas por Mitógeno , Estresse Psicológico/psicologia
9.
J Microbiol Biotechnol ; 33(10): 1268-1280, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37463854

RESUMO

Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levels were also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.


Assuntos
Adipócitos Bege , Camundongos , Animais , Adipócitos Bege/metabolismo , Glicosídeos/metabolismo , Termogênese , Trifosfato de Adenosina/metabolismo , Células 3T3-L1 , Tecido Adiposo Branco
10.
Nutrients ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049542

RESUMO

The study aimed to explore in vivo the influence of cannabidiol (CBD) on the development of alcohol tolerance in rats. Rats were treated with ethanol (3.0 g/kg, i.p.) and CBD (20 mg/kg, p.o.) for nine successive days, and rectal body temperature, sedation (sleeping time), and blood alcohol concentration (BAC) were measured. In the prefrontal cortex, hippocampus, and striatum, the cannabinoid (CB1R and CB2R) and dopaminergic (DRD1, DRD2, DRD4, DRD5) receptors' mRNA level changes were analyzed using the quantitative RT-PCR method. CBD inhibited the development of tolerance to the hypothermic and sedative action of alcohol, coupled with BAC elevation. On a molecular level, the most pronounced effects of the CBD + ethanol interaction in the striatum were observed, where CBD reversed the downregulation of CB2R gene transcription caused by ethanol. For CB1R, DRD1, and DRD2 mRNAs, the CBD + ethanol interaction produced opposite effects than for CB2R ones. In turn, for the transcription of genes encoding dopaminergic receptors, the most potent effect of alcohol as CBD occurred in the hippocampus. However, the combined CBD and alcohol administration showed the same effect for each substance administered separately. Since tolerance is considered a prelude to drug addiction, obtained results allow us to emphasize the thesis that CBD can inhibit the development of alcohol dependence in rats.


Assuntos
Canabidiol , Ratos , Animais , Canabidiol/farmacologia , Concentração Alcoólica no Sangue , Córtex Pré-Frontal , Hipocampo , Etanol/farmacologia
11.
Pharmacol Rep ; 75(2): 342-357, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787018

RESUMO

BACKGROUND: Methylphenidate and atomoxetine are used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Our previous studies established the validity of the 6-hydroxydopamine (6-OHDA) mouse model of ADHD and demonstrated hypersensitivity to pain, in line with clinical reports in ADHD patients. Acute methylphenidate treatment reduces hyperactivity and increases attention, but does not affect pain behaviors in this mouse model. Whereas atomoxetine has been shown to be effective against some symptoms of ADHD, nothing is known about its possible action on comorbid pain hypersensitivity. The objectives of the present research are (1) to investigate the effects of acute and chronic treatment with atomoxetine on ADHD-like symptoms and nociceptive thresholds, and (2) to explore the catecholaminergic systems underlying these effects. METHODS: Sham and 6-OHDA cohorts of male mice were tested for hyperactivity (open field), attention and impulsivity (5-choice serial reaction time task test), and thermal (hot plate test) and mechanical (von Frey test) thresholds after acute or repeated treatment with vehicle or atomoxetine (1, 3 or 10 mg/kg). RESULTS: Acute administration of atomoxetine (10 mg/kg) reduced the hyperactivity and impulsivity displayed by 6-OHDA mice, without affecting attention or nociception. However, atomoxetine administered at 3 mg/kg/day for 7 days alleviated the ADHD-like core symptoms and attenuated the hyperalgesic responses. Furthermore, hyperlocomotion and anti-hyperalgesic activity were antagonized with phentolamine, propranolol, and sulpiride pre-treatments. CONCLUSION: These findings demonstrated that when administered chronically, atomoxetine has a significant effect on ADHD-associated pain hypersensitization, likely mediated by both α- and ß-adrenergic and D2/D3 dopaminergic receptors, and suggest new indications for atomoxetine that will need to be confirmed by well-designed clinical trials.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Metilfenidato , Masculino , Camundongos , Animais , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Oxidopamina , Propilaminas/farmacologia , Dor/tratamento farmacológico , Comorbidade , Inibidores da Captação Adrenérgica/efeitos adversos
12.
Psychopharmacology (Berl) ; 239(12): 3833-3846, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269378

RESUMO

RATIONALE: The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches. OBJECTIVES: In this study, we used methamphetamine (METH) as an exemplary psychoactive substance to investigate its acute toxicity and possible underlying mechanisms in 5-day post-fertilization (5 dpf) zebrafish larvae. METHODS: Lethality and toxicity of different concentrations of METH were examined in 5-dpf zebrafish larvae using a 96-well plate format. RESULTS: METH induced lethality in zebrafish larvae in a dose-dependent manner, which was associated with initial sympathomimetic activation, followed by cardiotoxicity. This was evidenced by significant heart rate increases at low doses, followed by decreased cardiac function at high doses and later time points. Levels of ammonia in the excreted water were increased but decreased internally. There was also evidence of seizures. Co-administration of the glutamate AMPA receptor antagonist GYKI-52466 and the dopamine D2 receptor antagonist raclopride significantly attenuated METH-induced lethality, suggesting that this lethality may be mediated synergistically or independently by glutamatergic and dopaminergic systems. CONCLUSIONS: These experiments provide a baseline for the study of the toxicity of related amphetamine compounds in 5-dpf zebrafish as well as a new high-throughput approach for investigating the toxicities of rapidly emerging new psychoactive substances.


Assuntos
Metanfetamina , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Metanfetamina/farmacologia , Larva , Dopamina/farmacologia , Convulsões/induzido quimicamente , Antagonistas de Aminoácidos Excitatórios/farmacologia
13.
BMC Neurosci ; 23(1): 44, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820831

RESUMO

BACKGROUND: Following Spinal Cord Injury (SCI), innumerable inflammatory and degenerative fluctuations appear in the injured site, and even remotely in manifold areas of the brain. Howbeit, inflammatory, degenerative, and oscillatory changes of motor cortices have been demonstrated to be due to SCI, according to recent studies confirming the involvement of cognitive areas of the brain, such as hippocampus and prefrontal cortex. Therefore, addressing SCI induced cognitive complications via different sights can be contributory in the treatment approaches. RESULTS: Herein, we used 16 male Wistar rats (Sham = 8, SCI = 8). Immunohistochemical results revealed that spinal cord contusion significantly increases the accumulation of alpha-synuclein and decreases the expression of Doublecortin (DCX) in the hippocampal regions like Cornu Ammonis1 (CA1) and Dentate Gyrus (DG). Theses degenerative manifestations were parallel with a low expression of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), SRY (sex determining region Y)-box 2 (SOX2), and dopaminergic receptors (D1 and D5). Additionally, based on the TUNEL assay analysis, SCI significantly increased the number of apoptotic cells in the CA1 and DG regions. Cognitive function of the animals was assessed, using the O-X maze and Novel Object Recognition (NORT); the obtained findings indicted that after SCI, hippocampal neurodegeneration significantly coincides with the impairment of learning, memory and recognition capability of the injured animals. CONCLUSIONS: Based on the obtained findings, herein SCI reduces neurogenesis, decreases the expression of D1 and D5, and increases apoptosis in the hippocampus, which are all associated with cognitive function deficits.


Assuntos
Hipocampo , Traumatismos da Medula Espinal , alfa-Sinucleína , Animais , Cognição/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Neurogênese/fisiologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , alfa-Sinucleína/metabolismo
14.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405990

RESUMO

Omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) are critical for cell membrane structure and function. Human beings have a limited ability to synthesise docosahexaenoic acid (DHA), the main n-3 LCPUFA required for neurological development. Inadequate levels of n-3 LCPUFA can affect the dopaminergic system in the brain and, when combined with genetic and other factors, increase the risk of developing aggression, inattention and impulse-control disorders. In this study, male prisoners were administered questionnaires assessing aggressive behaviour and executive functions. Participants also produced blood sampling for the measurement of the Omega-3 Index and the genotyping of dopaminergic genetic variants. Significant associations were found between functional genetic polymorphism in DBH rs1611115 and verbal aggression and between DRD2 rs4274224 and executive functions. However, the Omega-3 Index was not significantly associated with the tested dopaminergic polymorphisms. Although previous interactions between specific genotypes and n-3 LCPUFA were previously reported, they remain limited and poorly understood. We did not find any association between n-3 LCPUFA and dopaminergic polymorphisms in adult male prisoners; however, we confirmed the importance of genetic predisposition for dopaminergic genes (DBH and DRD2) in aggressive behaviour, memory dysfunction and attention-deficit disorder.


Assuntos
Ácidos Graxos Ômega-3 , Prisioneiros , Adulto , Agressão , Cognição , Ácidos Docosa-Hexaenoicos , Dopamina/genética , Humanos , Masculino
15.
Eur J Pharmacol ; 922: 174872, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35300994

RESUMO

In this study, a pharmacological approach, together with the paw pressure test, was used to investigate the role of dopamine and its receptors in the peripheral processing of the nociceptive response in mice. Initially, the administration of dopamine (5, 20, and 80 ng/paw) in the hind paw of male Swiss mice (30-40 g) promoted antinociceptive effects in a dose-dependent manner. This was considered a peripheral effect, as it did not produce changes in the nociceptive threshold of the contralateral paw. The D2, D3, and D4 dopamine receptor antagonists remoxipride (4 µg/paw), U99194 (16 µg/paw), and L-745,870 (16 µg/paw), respectively, reversed the dopamine-mediated antinociception in mice with PGE2-induced hyperalgesia. The D1 and D5 dopamine receptor antagonists SKF 83566 (2 µg/paw) and SCH 23390 (1.6 µg/paw), respectively, did not alter dopamine antinociception. In contrast, dopamine at higher doses (0.1, 1, and 10 µg/paw) caused hyperalgesia in the animals, and the D1 and D5 receptor antagonists reversed this pronociceptive effect (10 µg/paw), whereas the D2 receptor antagonist remoxipride did not. Our data suggest that dopamine has a dual effect that depends on the dose, as it causes peripheral antinociceptive effects at small doses via the activation of D2-like receptors and nociceptive effects at higher doses via the activation of D1-like receptors.


Assuntos
Analgesia , Dopamina , Analgésicos/efeitos adversos , Animais , Antagonistas de Dopamina/farmacologia , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Nociceptividade , Dor/induzido quimicamente , Dor/tratamento farmacológico , Receptores de Dopamina D1 , Remoxiprida/efeitos adversos
16.
Curr Neuropharmacol ; 20(8): 1632-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34429055

RESUMO

BACKGROUND: Dopamine is one of the main mediators capable regulate the neuroimmune interaction and is involved in multiple sclerosis (MS) pathogenesis. OBJECTIVE: The aim of this study was to clarify the role of dopamine and its receptors in modulation of Th17-cells in MS. METHODS: 34 relapsing-remitting MS patients and 23 healthy subjects were examined. To assess the effect of dopamine on Th17-cells, CD4+ T-cells were cultured in the presence of dopamine and antagonist or agonist of D1- or D2-like dopaminergic receptors and stimulated with anti-CD3/CD28- microbeads. The levels of cytokines in supernatants were assessed by ELISA. RESULTS: Production of interleukin-17 (IL-17), interferon-γ (IFN-γ), granulocyte-colony stimulating factor (GM-CSF), and IL-21 by CD4+ T-cells as well as dopamine were comparable between the groups. Dopamine suppressed cytokine secretion by activated СD4+ T-cells in both groups. Blockade of D1-like dopaminergic receptor with a specific antagonist SCH23390 did not affect dopaminemediated cytokine suppression. In contrast, blockade of D2-like dopaminergic receptor by sulpiride decreased dopamine's inhibitory effect on IL-17 secretion in both groups and GM-CSF and IL-21 production in MS patients. Blockade of D1-like dopaminergic receptor directly inhibited IL-17, IFN- γ, GM-CSF in both groups and IL-21 production in healthy subjects, while blockade of D2-like dopaminergic receptor had no effect on cytokine secretion. Finally, activation of D2-like dopaminergic receptor with a specific agonist quinpirole decreased cytokine production in both groups. CONCLUSION: These data suggest an inhibitory role of dopamine on Th17-cells in MS, which could be mediated by the activation of the D2-like dopaminergic receptor.


Assuntos
Dopamina , Esclerose Múltipla , Receptores Dopaminérgicos , Células Th17 , Agonistas de Dopamina , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Interleucina-17 , Esclerose Múltipla/imunologia , Células Th17/imunologia
17.
Zh Nevrol Psikhiatr Im S S Korsakova ; 121(7. Vyp. 2): 82-89, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34387452

RESUMO

OBJECTIVE: To investigate the direct effect of D1-like dopaminergic receptors antagonist on Th17-cells function in multiple sclerosis (MS) in vitro. MATERIAL AND METHODS: Forty-one relapsing-remitting MS patients and twenty-five healthy subjects were examined. The functional activity of Th17-cells was assessed by the ability to produce IL-17 and IFN-γ by peripheral blood mononuclear cells (PBMCs) and CD4+ T cells, stimulated with microbeads coated with anti-CD3/anti-CD28-antibodies. To study the involvement of D1-like dopaminergic receptors in modulation of Th17-cell function, the samples of PBMCs or CD4+ T-cells were cultured in the presence of dopamine and/or specific D1-like dopaminergic receptors antagonist (SCH23390). Cytokine levels in cell culture supernatants were measured by ELISA. RESULTS: The production of IL-17 and IFN-γ by stimulated PBMCs were higher in MS patients during relapse than in MS patients during clinical remission or in healthy subjects. The production of cytokines by stimulated PBMCs or CD4+ T-cells in MS patients during clinical remission and healthy subjects was comparable. Dopamine reduced the production of cytokines by PBMCs and CD4+ T-cells in all groups. Blockade of D1-like dopaminergic receptors did not affect the dopamine-mediated cytokine suppression in MS patients and healthy subjects. Blockade of D1-like dopaminergic receptors directly suppressed cytokine production by PBMCs and CD4+ T-cells in MS patients and healthy subjects. CONCLUSIONS: Dopamine and blockade of D1-like dopaminergic receptors have an inhibitory effect on Th17-cell function in MS. The activation of D2-like dopaminergic receptors could mediate the inhibitory effect of dopamine on Th17-cells.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Leucócitos Mononucleares , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Receptores Dopaminérgicos , Células Th17
18.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561962

RESUMO

G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand - receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors' binding sites with residues particularly important in recognition of ligands' structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Ligantes , Ligação Proteica
19.
Brain Behav Immun ; 93: 23-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278561

RESUMO

One of the main challenges to understand drug addiction is defining the biological mechanisms that underlie individual differences in recidivism. Studies of these mechanisms have mainly focused on the brain, yet we demonstrate here a significant influence of the peripheral immune system on this phenomenon. Lewis (LEW) and Fischer 344 (F344) rats have different immunological profiles and they display a distinct vulnerability to the reinforcing effects of cocaine, with F344 more resistant to reinstate cocaine-seeking behavior. Bone marrow from male LEW and F344 rats was transferred to male F344 rats (F344/LEW-BM and F344/F344-BM, respectively), and these rats were trained to self-administer cocaine over 21 days. Following extinction, these animals received a sub-threshold primer dose of cocaine to evaluate reinstatement. F344/LEW-BM but not F344/F344-BM rats reinstated cocaine-seeking behavior, in conjunction with changes in their peripheral immune cell populations to a profile that corresponded to that of the LEW donors. After cocaine exposure, higher CD4+ T-cells and lower CD4+CD25+ T-cells levels were observed in F344/LEW-BM rats referred to control, and the splenic expression of Il-17a, Tgf-ß, Tlr-2, Tlr-4 and Il-1ß was altered in both groups. We propose that peripheral T-cells respond to cocaine, with CD4+ T-cells in particular undergoing Th17 polarization and generating long-term memory, these cells releasing mediators that trigger central mechanisms to induce reinstatement after a second encounter. This immune response may explain the high rates of recidivism observed despite long periods of detoxification, shedding light on the mechanisms underlying the vulnerability and resilience of specific individuals, and opening new perspectives for personalized medicine in the treatment of relapse.


Assuntos
Cocaína , Animais , Medula Óssea , Extinção Psicológica , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Especificidade da Espécie
20.
Clin. biomed. res ; 41(3): 245-253, 20210000.
Artigo em Português | LILACS | ID: biblio-1348794

RESUMO

Dentre os sistemas neurais responsáveis pela ingestão dos alimentos, destaca-se a via dopaminérgica mesolímbica que, através da liberação de dopamina nos núcleos de accumbens, desperta prazer e motivação para recompensas químicas e naturais. Esta via de recompensa age através dos receptores dopaminérgicos transmembranares, que variam de DRD1 a DRD5. Desta forma, considerando os efeitos prazerosos despertados pela ingestão alimentar, é plausível que variações genéticas em genes do sistema dopaminérgico possam ter um papel na arquitetura genética da obesidade. Este estudo tem como objetivo realizar uma revisão narrativa da literatura sobre a influência de variantes genéticas nos receptores dopaminérgicos em fenótipos relacionados com a obesidade. Em conjunto, os principais achados desta revisão indicaram que os genes codificadores dos receptores DRD2 e DRD4 possam ser os mais relevantes no contexto da obesidade e fenótipos relacionados. No entanto, a obesidade é uma doença complexa e multifatorial e novos estudos são ainda necessários para uma melhor compreensão do impacto da dopamina nos desfechos relacionado à obesidade. É importante também destacar que esses efeitos podem ser específicos para subgrupos de pacientes e que outros fatores, além das variantes genéticas, devem ser considerados. (AU)


Among the neural systems responsible for food ingestion, the mesolimbic dopaminergic pathway stands out by eliciting pleasure and motivation for chemical and natural rewards through the release of dopamine in the nucleus accumbens. This reward pathway is regulated by transmembrane dopaminergic receptors, which range from DRD1 to DRD5. Thus, considering the pleasurable effects aroused by food intake, it is plausible that genetic variations in genes of the dopaminergic system may have a role in the genetic architecture of obesity. This study aims to conduct a narrative review of the literature on the influence of genetic variants of dopaminergic receptors on obesity-related phenotypes. Taken together, the main findings of this review indicated that the genes encoding the DRD2 and DRD4 receptors may be the most relevant in the context of obesity and related phenotypes. However, obesity is a complex and multifactorial disease and new studies are still being conducted to better understand the impact of dopamine on obesity-related outcomes. It is also important to note that these effects can be specific to subgroups of patients and that other factors, in addition to genetic variants, must be considered. (AU)


Assuntos
Dopamina , Receptores Dopaminérgicos , Comportamento Alimentar , Obesidade , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA