Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
In Silico Pharmacol ; 12(2): 65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035102

RESUMO

Microbial infection management and treatment are crucial as a result of the prevalent antimicrobial resistance issue. Progressive studies are being carried out on how to develop drugs that can mitigate the resistance trends of these microorganisms. Secondary metabolites of plants can also be employed and accessed for this role, as the current study examines the antibacterial activities of phytochemicals from three (3) plants (Cucubita moschata, Cucubita maxima, and Irvingia gabonesis) through computational approaches. Molecular docking studies were carried out to show the binding affinities of the phytochemicals against two target receptors (DNA gyrase and Penicillin Binding Protein 3). In addition, drug likeness analysis, bioactivity and oral-bioavailability properties, absorption, distribution, metabolism, and excretion (ADME) profiling, as well as prediction of activity spectra for substances (PASS) using online tools like SwissADME, PASS online, AdmetSAR2, and Discovery Studio, were also performed. The results obtained identified isochlorogenic acid and apigenin-7-O-glucoside for DNA gyrase (1KZN) and apigenin-7-O-glucoside for Penicillin Binding Protein 3 (4BJP), which were further subjected to molecular dynamics simulation (MDS) and therefore recommended as the lead compounds.

2.
Heliyon ; 10(13): e33160, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035494

RESUMO

In the present work, two hybrid series of pyrazole-clubbed pyrimidine and pyrazole-clubbed thiazole compounds 3-21 from 4-acetyl-1,3-diphenyl-1H-pyrazole-5(4H)-ole 1 were synthesized as novel antimicrobial agents. Their chemical structures were thoroughly elucidated in terms of spectral analyses such as IR, 1H NMR, 13C NMR and mass spectra. The compounds were in vitro evaluated for their antimicrobial efficiency against various standard pathogen strains, gram -ive bacteria (Pseudomonas aeruginosa, Klebsiella pneumonia), gram + ive bacteria (MRSA, Bacillus subtilis), and Unicellular fungi (Candida albicans) microorganisms. The ZOI results exhibited that most of the tested molecules exhibited inhibition potency from moderate to high. Where compounds 7, 8, 12, 13 and 19 represented the highest inhibition potency against most of the tested pathogenic microbes comparing with the standard drugs. In addition, the MIC results showed that the most potent molecules 7, 8, 12, 13 and 19 showed inhibition effect against most of the tested microbes at low concentration. Moreover, the docking approach of the newly synthesized compounds against DNA gyrase enzyme was performed to go deeper into their molecular mechanism of antimicrobial efficacy. Further, computational investigations to calculate the pharmacokinetics parameters of the compounds were performed. Among them 7, 8, 12, 13 and 19 are the most potent compounds revealed the highest inhibition efficacy against most of the tested pathogenic microbes comparing with the standard drugs.

3.
Bioorg Med Chem Lett ; 111: 129911, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067715

RESUMO

Bacterial DNA gyrase and topoisomerase IV inhibition has emerged as a promising strategy for the cure of infections caused by antibiotic-resistant bacteria. The Novel Bacterial Topoisomerase Inhibitors (NBTIs) bind to a different site from that of the quinolones with novel mechanism of action. This evades the existing target-mediated bacterial resistance associated with quinolones. This article presents our efforts to identify in vitro potent and broad-spectrum antibacterial agent 4l.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Piperidinas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Piperidinas/química , Piperidinas/farmacologia , Piperidinas/síntese química , Relação Estrutura-Atividade , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/síntese química , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Humanos
4.
Eur J Med Chem ; 276: 116693, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053193

RESUMO

New 2-pyrrolamidobenzothiazole-based inhibitors of mycobacterial DNA gyrase were discovered. Among these, compounds 49 and 51, show excellent antibacterial activity against Mycobacterium tuberculosis and Mycobacterium abscessus with a notable preference for mycobacteria. Both compounds can penetrate infected macrophages and reduce intracellular M. tuberculosis load. Compound 51 is a potent inhibitor of DNA gyrase (M. tuberculosis DNA gyrase IC50 = 4.1 nM, Escherichia coli DNA gyrase IC50 of <10 nM), selective for bacterial topoisomerases. It displays low MIC90 values (M. tuberculosis: 0.63 µM; M. abscessus: 2.5 µM), showing specificity for mycobacteria, and no apparent toxicity. Compound 49 not only displays potent antimycobacterial activity (MIC90 values of 2.5 µM for M. tuberculosis and 0.63 µM for M. abscessus) and selectivity for mycobacteria but also exhibits favorable solubility (kinetic solubility = 55 µM) and plasma protein binding (with a fraction unbound of 2.9 % for human and 4.7 % for mouse). These findings underscore the potential of fine-tuning molecular properties to develop DNA gyrase B inhibitors that specifically target the mycobacterial chemical space, mitigating the risk of resistance development in non-target pathogens and minimizing harm to the microbiome.


Assuntos
Antibacterianos , DNA Girase , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Inibidores da Topoisomerase II , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Camundongos , Animais , Relação Dose-Resposta a Droga , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Desenvolvimento de Medicamentos , Mycobacterium/efeitos dos fármacos
5.
ACS Infect Dis ; 10(8): 3071-3082, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39082980

RESUMO

Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.


Assuntos
Antibacterianos , DNA Girase , DNA Topoisomerase IV , Neisseria gonorrhoeae , Inibidores da Topoisomerase II , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/genética , DNA Girase/metabolismo , DNA Girase/genética , DNA Girase/química , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Humanos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Barbitúricos/farmacologia , Barbitúricos/química , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Isoxazóis , Morfolinas , Compostos de Espiro
6.
Front Chem ; 12: 1419242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911996

RESUMO

DNA gyrase and topoisomerase IV show great potential as targets for antibacterial medicines. In recent decades, various categories of small molecule inhibitors have been identified; however, none have been effective in the market. For the first time, we developed a series of disalicylic acid methylene/Schiff bases hybrids (5a-k) to act as antibacterial agents targeting DNA gyrase and topoisomerase IV. The findings indicated that the new targets 5f-k exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria, with efficacy ranging from 75% to 115% of the standard ciprofloxacin levels. Compound 5h demonstrated the greatest efficacy compared to the other compounds tested, with minimum inhibitory concentration (MIC) values of 0.030, 0.065, and 0.060 µg/mL against S. aureus, E. coli, and P. aeruginosa. 5h had a MIC value of 0.050 µg/mL against B. subtilis, which is five times less potent than ciprofloxacin. The inhibitory efficacy of the most potent antibacterial derivatives 5f, 5h, 5i, and 5k against E. coli DNA gyrase was assessed. The tested compounds demonstrated inhibitory effects on E. coli DNA gyrase, with IC50 values ranging from 92 to 112 nM. These results indicate that 5f, 5h, 5i, and 5k are more effective than the reference novobiocin, which had an IC50 value of 170 nM. Compounds 5f, 5h, 5i, and 5k were subjected to additional assessment against E. coli topoisomerase IV. Compounds 5h and 5i, which have the highest efficacy in inhibiting E. coli gyrase, also demonstrated promising effects on topoisomerase IV. Compounds 5h and 5i exhibit IC50 values of 3.50 µM and 5.80 µM, respectively. These results are much lower and more potent than novobiocin's IC50 value of 11 µM. Docking studies demonstrate the potential of compound 5h as an effective dual inhibitor against E. coli DNA gyrase and topoisomerase IV, with ADMET analysis indicating promising pharmacokinetic profiles for antibacterial drug development.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38910468

RESUMO

BACKGROUND: The development of antimicrobial agents is crucial for several reasons, primarily to combat infectious diseases and to address the growing threat of antimicrobial resistance. The need for the contin-ued development of antimicrobial drugs persists despite the presence of many existing drugs for several reasons viz; emerging new pathogens and diseases, reistance to existing drug and propogation of multi-drug resistance to existing drugs. OBJECTIVE: The objective of the study was to synthesize and evaluate the antimicrobial potential of newly synthesized benzothiazole derivatives. METHODS: A new series of 2-(substituted amino)-N-(6-substituted-1,3-benzothiazol-2yl)acetamide BTC(a-t) has been synthesized by reacting it with chloracetyl chloride with substituted 2-amino benzothiazole and further refluxed with various substituted amines to obtain target compounds. The synthesized compounds were screened experimentally for their antimicrobial property against gram-positive and gram-negative bacteria and fungi. The zone of inhibition and minimum inhibitory concentration of compounds were determined against selected bacterial and fungal strains. Further docking study was carried out to check the probable interactions with the selected protein using V-life MDS 3.5 software (DNA gyrase, PDB: 3G75). RESULT: Compounds BTC-j N-(6-methoxy-1,3-benzothiazol-2-yl)-2-(pyridine-3-ylamino)acetamide and BTC-r N-(6-nitro-1,3-benzothiazol-2-yl)-2-(pyridine-3-ylamino)acetamide were found to have good antimicrobial potential. The compound BTC-j showed good antibacterial activity against S. aureus at an MIC value of 12.5 µg/mL, B. subtilis at MIC of 6.25µg/mL, E. coli at MIC of 3.125µg/mL, and P. aeruginosa at MIC of 6.25µg/mL. Thus, from the result, it was observed that compounds BTC-j, BTC-f, BTC-n, and BTC-r exhibited significant antibacterial and antifungal potential at different concentrations. CONCLUSION: The present study resulted in the successful synthesis of 2-acetamido substituted benzothiazole derivatives BTC(a-t) with good yields. The dock score of the compounds and the antimicrobial activity were found to be consistent. No statistical difference in the antimicrobial activity of the standard and test compounds was found, indicating that the test compounds have comparable activity. Therefore, benzothiazole linked to heterocyclic rings with an acetamide linkage may serve as promising lead molecules for further optimization in the journey to discover potent antibacterial agents. Thus, we conclude that the synthesized compounds have the potential for further development as novel antimicrobial agents.

8.
Expert Opin Ther Pat ; 34(6): 511-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856987

RESUMO

INTRODUCTION: Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED: New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION: By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.


Assuntos
Antibacterianos , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Gonorreia , Neisseria gonorrhoeae , Patentes como Assunto , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Antibacterianos/farmacologia , Humanos , Animais , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Inibidores da Topoisomerase II/farmacologia , Oxazolidinonas/farmacologia , Testes de Sensibilidade Microbiana , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , DNA Girase/metabolismo , Morfolinas , Isoxazóis , Compostos de Espiro , Compostos Heterocíclicos com 3 Anéis , Barbitúricos , Acenaftenos
10.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856655

RESUMO

DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (-1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface 'swapping' (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed 'swivelling' mechanism for DNA gyrase (Gubaev et al., 2016).


Assuntos
DNA Girase , DNA Girase/metabolismo , DNA Girase/química , DNA Girase/genética , Multimerização Proteica , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , DNA/metabolismo , DNA/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-38829386

RESUMO

Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.

12.
ACS Infect Dis ; 10(8): 2785-2794, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38898378

RESUMO

Globally, there have been increasing reports of antimicrobial resistance in nontyphoidal Salmonella (NTS), which can develop into severe and potentially life-threatening diarrhea. This study focuses on the synergistic effects of DNA gyrase mutations and plasmid-mediated quinolone resistance (PMQR) genes, specifically qnrB19, on fluoroquinolone (FQ) resistance in Salmonella Typhimurium. By utilizing recombinant mutants, GyrAS83F and GyrAD87N, and QnrB19's, we discovered a significant increase in fluoroquinolones resistance when QnrB19 is present. Specifically, ciprofloxacin and moxifloxacin's inhibitory concentrations rose 10- and 8-fold, respectively. QnrB19 was found to enhance the resistance capacity of mutant DNA gyrases, leading to high-level FQ resistance. Additionally, we observed that the ratio of QnrB19 to DNA gyrase played a critical role in determining whether QnrB19 could protect DNA gyrase against FQ inhibition. Our findings underscore the critical need to understand these resistance mechanisms, as their coexistence enables bacteria to withstand therapeutic FQ levels, posing a significant challenge to treatment efficacy.


Assuntos
Substituição de Aminoácidos , Antibacterianos , DNA Girase , Farmacorresistência Bacteriana , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Salmonella typhimurium , DNA Girase/genética , DNA Girase/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Mutação , Plasmídeos/genética
13.
Microbes Environ ; 39(5)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839371

RESUMO

All cells must maintain the structural and functional integrity of the genome under a wide range of environments. High temperatures pose a formidable challenge to cells by denaturing the DNA double helix, causing chemical damage to DNA, and increasing the random thermal motion of chromosomes. Thermophiles, predominantly classified as bacteria or archaea, exhibit an exceptional capacity to mitigate these detrimental effects and prosper under extreme thermal conditions, with some species tolerating temperatures higher than 100°C. Their genomes are mainly characterized by the presence of reverse gyrase, a unique topoisomerase that introduces positive supercoils into DNA. This enzyme has been suggested to maintain the genome integrity of thermophiles by limiting DNA melting and mediating DNA repair. Previous studies provided significant insights into the mechanisms by which NAPs, histones, SMC superfamily proteins, and polyamines affect the 3D genomes of thermophiles across different scales. Here, I discuss current knowledge of the genome organization in thermophiles and pertinent research questions for future investigations.


Assuntos
Archaea , Bactérias , Genoma Arqueal , Genoma Bacteriano , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano/genética , Temperatura Alta , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Reparo do DNA
14.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906068

RESUMO

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Assuntos
DNA Girase , Escherichia coli , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Girase/metabolismo , DNA Girase/química , Sítios de Ligação , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Relação Estrutura-Atividade , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Estrutura Molecular , Teoria Quântica , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Modelos Moleculares
15.
mSphere ; 9(5): e0076423, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38722162

RESUMO

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Assuntos
Antibacterianos , Bacillus subtilis , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Streptomyces , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Policetídeos/farmacologia , Policetídeos/metabolismo , Glicosídeos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Girase/genética , DNA Girase/metabolismo
16.
Front Microbiol ; 15: 1366614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803373

RESUMO

Introduction: In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods: The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion: The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.

17.
Helicobacter ; 29(2): e13075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38627919

RESUMO

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Assuntos
Barbitúricos , Infecções por Helicobacter , Helicobacter pylori , Isoxazóis , Morfolinas , Oxazolidinonas , Compostos de Espiro , Humanos , Antibacterianos/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Testes de Sensibilidade Microbiana , Ensaios Clínicos Fase III como Assunto
18.
J Infect Chemother ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580055

RESUMO

INTRODUCTION: Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS: The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT: WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION: WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.

19.
ACS Infect Dis ; 10(4): 1137-1151, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606465

RESUMO

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Assuntos
Acenaftenos , DNA Topoisomerase IV , Escherichia coli , Compostos Heterocíclicos com 3 Anéis , Aminoácidos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , DNA Girase/metabolismo , DNA Topoisomerase IV/genética
20.
Chem Biodivers ; 21(6): e202400200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570192

RESUMO

In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24 mm compared with ampicillin (20-25 mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17 mm) and 9 d (ZI=16 mm) recorded higher antifungal activity against C. albicans to that exhibited by the antifungal drug amphotericin B (ZI=15 mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.


Assuntos
Antibacterianos , Candida albicans , DNA Girase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinolinas , Tetra-Hidrofolato Desidrogenase , Quinolinas/química , Quinolinas/farmacologia , DNA Girase/metabolismo , DNA Girase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Candida albicans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Estrutura Molecular , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA